导航:首页 > 健康知识库 > mri检查是什么

mri检查是什么

发布时间:2021-01-19 17:46:19

1、MRI是什么检查

核磁共振检查又称磁共振成像简称MRI。

MRI(Magnetic Resonance Imaging)又称磁共振成像,是利用原子核自旋运动的特点,将人体置于特殊的外加磁场内,经无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量,在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接收器收入,经电子计算机处理而获得图像的方法。

(1)mri检查是什么扩展资料:

MRI设备基本要素:

1、磁体:除上述几种分型,尚有桶状闭合型及开放型,后者可行介入治疗。

2、梯度磁场:为空间编码而设计的,软件功能取决于它的强度和变化速率。

3、射频线圈:多种类型,发射和接收射频脉冲。

4、采集系统:程序和成像。

5、计算机:要求容量大、运算快、功能齐全,易操作。

2、核磁共振是检查什么的

核磁共振的功能

3、磁共振是检查什么的

4、什么是核磁共振,可以查出哪些病

?

5、什么是核磁共振

核磁共振
是80年代初应用于临床,以后发展迅速。核磁共振成像目前已成为
医学影像
诊断中的一个新的分支。
核磁共振成像原理

原子核
带有
正电
,许多元素的原子核,如1H、19FT和31P等进行自旋运动。通常情况下,原子核自旋轴的排列是无规律的,但将其置于外加磁场中时,核自旋空间取向从无序向有序过渡。自旋系统的磁化
矢量
由零逐渐增长,当系统达到平衡时,磁化强度达到稳定值。如果此时核自旋系统受到外界作用,如一定频率的射频激发原子核即可引起
共振效应
。在
射频脉冲
停止后,自旋系统已激化的原子核,不能维持这种状态,将回复到磁场中原来的排列状态,同时释放出微弱的能量,成为射
电信号
,把这许多信号检出,并使
之时
进行空间分辨,就得到运动中原子核分布
图像
。原子核从激化的状态回复到平衡排列状态的过程叫弛豫过程。它所需的时间叫
弛豫时间
。弛豫时间有两种即T1和T2,T1为自旋一
点阵
或纵向驰豫时间T2,T2为自旋一自旋或横向弛豫时间。
磁共振
最常用的核是氢原子核质子(1H),因为它的信号最强,在人体组织内也广泛存在。影响磁共振影像因素包括:(a)质子的密度;(b)弛豫时间长短;(c)
血液
和脑脊液的流动;(d)
顺磁性物质
(e)蛋白质。磁共振影像灰阶特点是,磁共振信号愈强,则亮度愈大,磁共振的信号弱,则亮度也小,从白色、灰色到黑色。各种组织磁共振影像灰阶特点如下;脂肪组织,松质骨呈白色;脑脊髓、
骨髓
呈白灰色;内脏、肌肉呈灰白色;液体,正常速度流血液呈黑色;骨皮质、
气体

含气
肺呈黑色。核磁共振的另一特点是
流动液体
不产生信号称为流动效应或流动
空白效应
。因此血管是灰白色管状结构,而血液为无信号的黑色。这样使血管很容易
软组织
分开。正常脊髓周围有脑脊液包围,脑脊液为黑色的,并有白色的
硬膜
为脂肪所衬托,使脊髓显示为白色的强信号结构。核磁共振已应用于
全身
各系统的成像诊断。效果最佳的是
颅脑
,及其脊髓、
心脏
大血管

关节
骨骼
、软组织及盆腔等。对
心血管疾病
不但可以观察各腔室、大血管及
瓣膜
的解剖变化,而且可作
心室
分析,进行定性及
半定量
的诊断,可作多个切面图,空间分辨率高,显示心脏及病变全貌,及其与周围结构的关系,优于其他X线成像、二维超声、
核素
及CT检查。在对脑脊髓病变诊断时,可作冠状、矢状及横断面像。
磁共振成像
自80年代初临床应用以来,发展迅速,渐趋成熟,它具有非
射线
成像、无创、无害。在心血管和脑脊髓成像时无需注入对比剂,安全、无痛苦,同时可作功能分析等优点。但它的缺点是昂贵、费时,尚难满足广泛应用。不适于某些急危
病人
。由于有磁场的影响,对装有
心脏起搏器
的病人不能应用,以免引起
起搏器
失灵,造成生命危险

6、什么是mri检查

最佳答案:核磁共振我们。主要是明确组织的变化情况。MRI。就是我们长说的磁共振、全名叫核磁共振检查。

7、什么是核磁共振?

核磁共振(Nuclear Magnetic Resonance即NMR)是处于静磁场中的原子核在另一交变电磁场作用下发生的物理现象。通常人们所说的核磁共振指的是利用核磁共振现象获取分子结构、人体内部结构信息的技术。 核磁共振波谱仪并不是所有原子核都能产生这种现象,原子核能产生核磁共振现象是因为具有核自旋。原子核自旋产生磁矩,当核磁矩处于静止外磁场中时产生进动核和能级分裂。在交变磁场作用下,自旋核会吸收特定频率的电磁波,从较低的能级跃迁到较高能级。这种过程就是核磁共振。 共振成像(MRI)又叫核磁共振成像技术。是继CT后医学影像学的又一重大进步。自80年代应用以来,它以极快的速度得到发展。其基本原理:是将人体置于特殊的磁场中,用无线电射频脉冲激发人体内氢原子核,引起氢原子核共振,并吸收能量。在停止射频脉冲后,氢原子核按特定频率发出射电信号,并将吸收的能量释放出来,被体外的接受器收录,经电子计算机处理获得图像,这就叫做核磁共振成像。 核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为核磁共振成像术(MRI)。 MRI是一种生物磁自旋成像技术,它是利用原子核自旋运动的特点,在外加磁场内,经射频脉冲激后产生信号,用探测器检测并输入计算机,经过处理转换在屏幕上显示图像。 MRI提供的信息量不但大于医学影像学中的其他许多成像术,而且不同于已有的成像术,因此,它对疾病的诊断具有很大的潜在优越性。它可以直接作出横断面、矢状面、冠状面和各种斜面的体层图像,不会产生CT检测中的伪影;不需注射造影剂;无电离辐射,对机体没有不良影响。MRI对检测脑内血肿、脑外血肿、脑肿瘤、颅内动脉瘤、动静脉血管畸形、脑缺血、椎管内肿瘤、脊髓空洞症和脊髓积水等颅脑常见疾病非常有效,同时对腰椎椎间盘后突、原发性肝癌等疾病的诊断也很有效。

8、MRI检查是什么意思?是核磁共振吗?

是的,MRI检查就是核磁共振。

MRI的英文全称是:Magnetic Resonance Imaging。经常为人们所利用的原子核有: 1H、回11B、13C、17O、19F、31P。在这项技术诞答生之初曾被称为核磁共振成像,到了20世纪80年代初,作为医学新技术的NMR成像(NMR Imaging)一词越来越为公众所熟悉。

随着大磁体的安装,有人开始担心字母“N”可能会对磁共振成像的发展产生负面影响。另外,“nuclear”一词还容易使医院工作人员对磁共振室产生另一个核医学科的联想。



(8)mri检查是什么扩展资料:

工作原理

核磁共振是一种物理现象,作为一种分析手段广泛应用于物理、化学生物等领域,到1973年才将它用于医学临床检测。为了避免与核医学中放射成像混淆,把它称为磁共振成像术(MRI)。

MRI通过对静磁场中的人体施加某种特定频率的射频脉冲,使人体中的氢质子受到激励而发生磁共振现象。停止脉冲后,质子在弛豫过程中产生MR信号。通过对MR信号的接收、空间编码和图像重建等处理过程,即产生MR信号。



9、什么是核磁共振现象?

1946年,美国加利福尼亚州斯坦福大学布劳克和麻省哈佛大学柏塞尔等人发现了核磁共振现象,并因此荣获1952年诺贝尔物理学奖金。

1971年,美国的达曼迪恩首先将核磁共振信号用于检查癌症。1977年,英国首次获得了人手腕部的磁共振剖面图。进入80年代,由于计算机技术、电子技术和超导技术的飞速发展,核磁共振成像术才日臻完善,并在临床上广为应用。1986年,我国引进了这一技术。

核磁共振成像术,是一种揭示人体“超原子结构(质子)”相互作用的“化学图像”的技术。

要了解这一技术,就需要知道什么是核磁共振现象。

我们知道,任何原子,如果它的原子核结构中,质子或中子的数目是奇数,或两者都是奇数时,这些原子的原子核,就具有带电和环绕一定方向的自旋轴自旋的特性。这样,原子核周围就存在着一个微弱的磁场。而我们可以把每个原子都看作具有一定磁矩的“磁针”。在我们人体的组织中,有不少具有这种特性的原子,例如氢、氟、钠、磷等等。医学上核磁共振技术就是利用人体内蕴藏量最大、占人体体重70%的水中氢原子核,也就是它的质子的共振成像的。那么,人体内的氢质子在一般情况下为什么不显出磁性呢?这是因为这些质子的自旋轴排列紊乱,没有一定的方向,彼此抵消了磁矩。

如果把人体放在一个强大的外磁场里,情况就不同了。这时,体内各个自旋带电磁的质子的磁轴,就会按外磁场的方向或反向,相互平行地重新排列,磁轴顺应外磁场方向者,处于低能状态,反之为高能状态。在此基础上,再加一个与外磁场方向相互垂直的短暂的射频脉冲,激发自旋质子获得横向磁矩,并产生推进运动,部分自旋质子吸收射频脉冲的能量,跃迁为高能状态,以至脉冲暂停,散发出电磁波信号,这一系列过程,就是磁共振现象。自旋质子从发出共振信号,到完全恢复到受射频脉冲激发前的平衡状态所需的时间称为“弛豫时间”。

人体组织器官及其疾病,在磁共振过程中,不同的组织,其磁共振信号强度不同,弛豫时间也不同,从而显示不同的图像。这种图像不仅可提供清晰的解剖细节,还能提供组织器官和病灶细胞内外的物理、化学、生物和生化等方面的诊断信息。

做核磁共振检查时,要拿掉身上各种带金属的物件,平躺在检查床上,徐徐送入“小屋”即可,它不必用任何造影剂,即可显示血管等结构。核磁共振检查对人体没有损伤,可以从任何方向作切层检查,成像有高度灵活性;分辨率高,而且10~20秒种即可成像。

与mri检查是什么相关的内容