导航:首页 > 软组织 > 生物软组织及其力学性能

生物软组织及其力学性能

发布时间:2020-03-20 03:11:39

1、生物3D打印主要用的材料有哪些?

3D生物打印机主要使用生物相容性的材料和细胞来3D打印,主要是生物医用高分子材料、无机材料、水凝胶材料或活细胞。(水凝胶:水凝胶是一种具有高水含量的亲水性或双亲性聚合物三维网络。由于水凝胶具有良好的生物相容性,以及与人体软组织相似的力学性质,因此被广泛应用于组织工程材料与药物的可控释放中。)



一、多色树脂

1、材料说明:系列材料集尺寸稳定性和细节可视性于一身,适用于模拟标准塑料和制作模型,可实现逼真的最终产品效果。

2、非常适用于:广泛的装配与外观测试 、活动部件与组装部件、 展览与营销模型、电子元件的组装、非常适用于硅胶模具多色树脂。

3、材料应用:电子消费品、家电、汽车制造、航空航天、医疗器械

4、材料颜色:白色 蓝色 黑色

5、材料热变形温度:45℃

6、市场价位:25元-30元/千克



二、铝材料

1、 材料说明:尼龙铝模型是由一种灰色铝粉及腈纶混合物制作而成。尼龙铝是一种高强度并且硬挺的材料,做成的样件能够承受较小的冲击力,并能在弯曲状态下抵抗一些压力。它的表面是一种沙沙的、粉末的质感,也略微有些疏松。

2、 材料应用:飞机、汽车、火车、船舶、宇宙火箭、航天飞机、人造卫星、化学反应器、医疗器械、冷冻装置

3、 材料颜色:银白色

4、 材料热变形温度:(熔点660℃)

三、钛合金

1、详细说明:生产最终使用的金属样件,质量可媲美开模加工的模型。钛合金模型的强度非常高,尺寸精密,能制作的最小细节的尺寸为0.1mm。

2、材料应用:家电、汽车制造、航空航天、医疗器械

3、材料颜色:银白色

材料热变形温度:熔点1672℃


四、半透膜树脂

1、材料说明:集高尺寸稳定性、生物相容性和表面平滑度于一身的标准塑料模拟材料

2、非常适用于: 透明或透视部件的成形和拟合测试、玻璃、眼镜、灯罩、灯箱、液流的可视化、彩染、医疗、艺术与展览模型

3、材料应用:电子消费品、家电、汽车制造、航空航天、医疗器械

3、材料颜色:半透明微黄

材料热变形温度:45℃

市场价位:800元-880元/千克


五、PC材料

1、材料说明:PC材料是真正的热塑性材料,具备工程塑料的所有特性。高强度,耐高温,抗冲击,抗弯曲,可以作为最终零部件使用。使用PC材料制作的样件,可以直接装配使用,广泛应用于交通工具及家电行业。PC的强度比ABS材料高出60%左右,具备超强的工程材料属性!

2、材料应用:电子消费品、家电、汽车制造、航空航天、医疗器械

3、材料颜色:白色

4、材料热变形温度:138℃

5、市场价格:20元-42元/千

六、ABS-M30i材料

1、材料说明:ABS-M30i是一种高强度材料,广泛应用于医疗,制药及食品包装行业。ABS-M30i制作的样件通过了生物相容性认证(如ISO 1099认证),可以通过伽马射线照射及EtO灭菌测试。通过与FORTUS3D成型系统的配合,能给你带来真正的具备优秀医学性能的概念模型,功能原型,制造工具及最终零部件的生物相容性部件。

2、材料应用:医学研究、食品包装、医疗器械

3、材料颜色:白色

4、材料热变形温度:90℃

5、市场价位:50元-100元/千克

七、PC-ISO材料

1、材料说明:PC-ISO材料也是一种通过医学卫生认证的热塑性材料,广泛应用于药品及医疗器械行业,具有很高的强度,可以用于手术模拟,颅骨修复,牙科等专业领域。具备PC的所有性能,同时可以用于食品及药品包装行业。做出的样件可以作为概念模型,功能原型,制造工具及最终零部件使用。

2、材料应用:医学研究、食品包装、医疗器械

3、材料颜色:白色

4、材料热变形温度:133℃

八、不锈钢

1、材料说明:不锈钢模型是用一种加入了铜成分的不锈钢粉打印而成。不锈钢打印在金属打印上来讲算是最便宜的一种打印形式,既具有高强度,又适合打印大物品。

2、材料应用:家电、汽车制造、航空航天、医疗器械

3、材料颜色:玫瑰金、钛金、紫金、银白色、蓝色

4、材料热变形温度:不同规格有不同的温度

部分内容引自百度文库

2、李晓阳的研究方向

生物软组织的非线性力学性质研究;血液流动研究;实验力学的测量技术的研究;磁悬浮六维轨道力测量;疲劳性能测试与可靠性分析技术研究;磁记忆无损探伤机理与技术研究。
生物力学作为主要的研究领域。在该领域中主要研究动脉壁非线性应变分析方法、非线性应力应变关系表达、动脉壁应变分布、动脉壁应力分布、动脉壁残余应力等问题。其中成功地发展了一种新的非线性应变分析方法,确定了标准的动脉壁静态力学实验方法。分析了动脉壁非线性应力应变关系的数学表达和非线性物理参数。先后承担两项国家自然科学基金的研究项目:1997年12月至2000年12月,“动脉壁力学性能研究”,项目号19772006。2003年12月至2006年12月,“主动脉弓夹层动脉瘤的力学机制研究”,项目号10372010。
实验检测力学领域多年研究实验机自动检测技术、残余应力检测分析技术、磁记忆检测技术、疲劳测试与可靠性分析。

3、生物组织中的力学性质?

生物力学的研究内容

生物的各个系统,特别是循环系统和呼吸系统的动力学问题,是人们长期研究的对象。循环系统动力学主要研究血液在心脏、动脉、微血管、静脉中流动,以及心脏、心瓣的力学问题。呼吸系统动力学主要研究在呼吸过程中,气道内气体的流动和肺循环中血液的流动,以及气血间气体的交换。

所有这些工作,包括生物材料的流变性质和动力学的研究,不仅有助于对人体生理、病理过程的了解,而且还能为人工脏器的设计和制造提供科学依据。生物力学还研究植物体液的输运。

环境对生理的影响也是生物力学的一个研究内容。众所周知,氧对生物体的发育有很大影响,在缺氧环境下生物体发育较慢,在富氧环境下发育较快。即使在短期内,环境的影响也是明显的。实验表明:在含10%的氧气、压力为一个大气压的环境中的幼鼠,即使只生活24小时,在直径为15~30微米的肺小动脉壁下,也会出现大量的纤维细胞。若延续4~7天,纤维细胞则会过渡为典型的平滑肌细胞,这无疑会影响肺循环中血液的流动。又如处于高加速度状态中的人,其血液的惯性会有明显的改变,悬垂器官会偏离原位,从而改变体内血液的流动状态。

在设计水中航行的工具时,经常需要考虑最佳外形、最佳推进方式和最佳操纵方式。由于自然选择,具有这些优点的水生物较易生存下来。因此,研究某些水生物的运动可以得到一些值得借鉴的知识。

例如,海豚是一种较高级的动物,它具有高效率的推进机制和很好的外形,特别是它的皮肤,分为两层,其间充满了弹性纤维和脂肪组织,具有特殊的减阻特性,在高速游动时能够保持层流边界层状态,这是因为它的皮肤对边界层中压力梯度变化十分敏感,能作适当的弹性变形以降低逆压梯度,因而在高速游动时,表皮能产生波状运动以抑制端流的出现。又如纤毛虫的运动是通过纤毛的特殊运动实现的,在人的呼吸道内也保持有这种低级生物的运动方式,即利用纤毛排除呼吸道内的某些异物。总之,研究大自然中生物运动的意义是很明显的。

人体各器官、系统,特别是心脏-循环系统和肺脏-呼吸系统的动力学问题、生物系统和环境之间的热力学平衡问题、特异功能问题等也是当前研究的热点。生物力学的研究,不仅涉及医学、体育运动方面,而且已深入交通安全、宇航、军事科学的有关方面。

生物固体力学是利用材料力学、弹塑性理论、断裂力学的基本理论和方法,研究生物组织和器官中与之相关的力学问题。

在近似分析中,人与动物骨头的压缩、拉伸、断裂的强度理论及其状态参数都可应用材料力学的标准公式。但是,无论在形态还是力学性质上,骨头都是各向异性的。20世纪70年代以来,对骨骼的力学性质已有许多理论与实践研究,如组合杆假设,二相假设等,有限元法、断裂力学、应力套方法和先测弹力法等检测技术都已应用于骨力学研究。

骨是一种复合材料,它的强度不仅与骨的构造也与材料本身相关。骨是骨胶原纤维和无机晶体的组合物。骨板由纵向纤维和环向纤维构成,骨质中的无机晶体使骨强度大大提高,体现了骨以最少的结构材料来承受最大外力的功能适应性。

木材和昆虫表皮都是纤维嵌入其他材料中构成的复合材料,它与由很细的玻璃纤维嵌在合成树脂中构成的玻璃钢的力学性质类似。动物与植物是由多糖、蛋白质类脂等构成的高聚物,应用橡胶和塑料的高聚物理论可得出蛋白质和多糖的力学性质。粘弹性及弹性变形、弹性模量等知识不仅可用于由氨基酸组成的蛋白质,也可用来分析有关细胞的力学性质。如细胞分裂时微丝的作用力,肌丝的工作方式和工作原理及细胞膜的力学性质等。

生物流体力学是研究生物心血管系统、消化呼吸系统、泌尿系统、内分泌以及游泳、飞行等与水动力学、空气动力学、边界层理论和流变学有关的力学问题。它一般将生物材料分为体液、硬组织和软组织,肌肉则属较为特殊的一类。

体液中以血液为研究的重点,主要研究血液的粘性和影响粘性的因素(如管径、有形成分和红细胞),以及流动中红细胞在管系支管中的比积分配问题,红细胞本身的力学性质,红细胞之间的相互作用,红细胞与管壁的作用等。人和动物体内血液的流动、植物体液的输运等与流体力学中的层流、湍流、渗流和两相流等流动型式相近。

在分析血液力学性质时,血液在大血管流动的情况下,可将血液看作均质流体。由于微血管直径与红细胞直径相当在微循环分析时,则可将血液看作两相流体。当然,血管越细,血液的非牛顿特性越显著。

人体内血液的流动大都属于层流,在血液流动很快或血管很粗的部位容易产生湍流。在主动脉中,以峰值速度运动的血液勉强处于层流状态,但在许多情况下会转变成湍流。尿道中的尿流往往是湍流;而通过毛细血管壁的物质交换则是一种渗流。对于血液流动这样的内流,因心脏的搏动血液流动具有波动性,又因血管富有弹性故流动边界呈不固定型。因此,体内血液的流动状态是比较复杂的。

对于软组织,则以研究它的流变性质,建立本构关系为主,因为本构关系不单是进一步分析它的力学问题的基础,而且具有临床意义。对于硬组织,除了研究它的流变性质外,对骨骼的消长与应力的关系也进行了大量研究。

流体力学的知识也用于动物游泳的研究。如鱼的体型呈流线型,且易挠曲,可通过兴波自我推进。水洞实验表明,在鱼游动时的流体边界层内,速度梯度很大,因而克服流体的粘性阻力的功率也大。

小生物和单细胞的游动,也是外流问题。鞭毛的波动和纤毛的拍打推动细胞表面的流体,使细胞向前运动。精子用鞭毛游动,水的惯性可以忽略,其水动力正比于精子的相对游动速度。原生动物在液体中运动,其所受阻力可以根据计算流场中小颗粒的阻力公式(斯托克斯定律)得出。

此外,空气动力学的原理与方法常用来研究动物的飞行。飞机和飞行动物飞行功率由两部分组成:零升力功率和诱导功率。前者用来克服边界层内的空气粘性阻力;后者用来向下加速空气,以提供大小等于飞机或飞行动物重量的升力。鸟在空中可以通过前后拍翅来调节滑翔角度,这与滑翔机襟翼调节的作用一样。风洞已用于研究飞行动物的飞行特性,如秃鹫、蝙蝠的滑行性能与模型滑翔机非常相似。

运动生物力学是用静力学、运动学和动力学的基本原理结合解剖学、生理学等研究人体运动的学科。用理论力学的原理和方法研究生物是个开展得比较早、比较深入的领域。
生物力学的研究特点

进行生物力学的研究首先要了解生物材料的几何特点,进而测定组织或材料的力学性质,确定本构方程、导出主要微分方程和积分方程、确定边界条件并求解。对于上述边界问题的解,需用生理实验去验证。若有必要,还需另立数学模型求解,以期理论与实验相一致。

生物力学与其他力学分支最重要的差别是:其研究的对象是生物体。因此,在研究生物力学问题时,实验对象所处的环境十分重要。作为实验对象的生物材料,有在体和离体之分。在体生物材料一般处于受力状态(如血管、肌肉),一旦游离出来则处于自由状态,即非生理状态(如血管、肌肉一旦游离,当即明显收缩变短)。两种状态材料的实验结果差异较大。

在体实验分为麻醉状态和非麻醉状态两种情况。至于离体实验,在对象游离出来后,根据要求可以按整体正位进行实验,或进一步加工成试件进行实验。不同的实验条件和加工条件,对实验结果的影响很大。这正是生物力学研究的特点。

4、肩胛骨生物力学

肩胛骨的运动解剖
(一)JGJ肩关节
1、主要结构:由肱骨头与肩胛骨的关节盂借关节囊连接而成。
2、辅助结构:
(1)关节盂唇:由纤维软骨环构成。
作用:加深关节窝,使两关节面相适应。
(2)肌腱韧带
①肱二头肌长头肌腱:起于盂上结节,从上方穿过肩关节。止于肱骨结间沟。
作用:从上方加固肩关节
②喙肱韧带:位于关节囊上方,起自喙突根部,止于肱骨大结节。
作用:可防止肱骨头向上脱位。
③盂肱韧带:位于关节囊前壁,起于关节囊前缘,止于肱骨小结节。
作用:加强关节囊前壁。
④喙肩韧带:横架喙突与肩峰之间。
作用:能防止肱骨头向上脱位
3、肩关节关节的运动
(1)绕冠状轴作屈伸:垫排球、跑步前后摆臂动作
(2)绕矢状轴作外展内收:两手侧平举或直立飞鸟动作、挥拍网球
(3)绕垂直轴作旋外旋内:健美操动作、铁饼预摆动作
(4)绕多个轴作环转:武术抡臂动作
(5)水平屈伸、水平外展:健美操动作、自游泳、侧平举
(二)ZGJ肘关节
1、主要结构:肘关节由肱尺关节、肱桡关节和桡尺近侧关节包在一个关节囊内构成复合性关节。
(1)肱尺关节:由肱骨滑车与尺骨的滑车切迹构成屈戍关节。
(2)肱桡关节:由肱骨小头与桡骨的关节凹构成 球窝关节。
(3)桡尺关节:由桡骨的环状关节面与尺骨的桡 切迹构成车轴关节。关节囊前后壁薄而松弛,两侧壁紧张形成侧副韧带。
2、关节的辅助结构
(1)尺侧副韧带:位于肘关节的内侧,起于肱骨内上髁,止于尺骨滑车切迹的内侧缘。
作用:从内侧加固关节。
(2)桡侧副韧带:位于肘关节的外侧,起于肱骨外上髁,止于尺骨桡切迹的前、后缘。
作用:从外侧加固关节。
(3)桡骨环韧带:两端附着于尺骨的桡切迹前后缘,与桡切迹共同组成一个纤维环包绕桡骨头。
作用:能在环内沿纵轴旋转而不易脱位。
3、肘关节的基本运动:
(1)绕冠状轴作屈伸运动:负重弯举、撑杆跳;
(2)绕垂直轴作旋前旋后:乒乓球正反手扣球、击剑.
(一)KGJ髋关节
1、关节基本结构:由髋臼和股骨头构成球窝关节。
2、关节的辅助结构
(1)髋臼唇附于:髋臼周缘的
结构:纤维软骨环 构成。
作用:有加深关节窝,增大关节稳固性的功能
(2)韧带
①骼股韧带:位于关节囊的前面,呈倒置“V”字形。起于髂前下棘;止于股骨转子间线。
作用:有限制髋关节过度伸和维持人体立姿势,是人体中最强大的韧带之一。
②耻股韧带:位于髋关节囊前内侧。起于耻骨上支,斜向外下方与髋关节囊 融合;止于转子间线下部。
作用:限制大腿在髋关节处过度外展和旋外。
③坐骨韧带:位于髋关节后面。起于坐骨体;止于大转子根部。
作用:限制大腿在髋关节处过度内收、旋内。
④股骨头韧带:位于关节腔内,一端附着髋臼,另一端附着股骨头凹。
作用:有滋着股骨头的血管通过,起着关节垫的作用。
3、关节的基本运动(了解)
(1)绕冠状轴佐屈伸运动:前后踢腿动作
(2)绕矢状轴作外收内展:侧踢腿运动
(3)绕垂直轴作旋内旋外:交叉步跑动作
(4)作环转:武术里合腿动作
(二)XGJ膝关节
1、关节的基本结构:由股胫关节和股髌关节构成的椭圆屈成关节。
(1)股胫关节:由股骨和胫骨相应的内、外侧髁关节面构成椭圆关节。
(2)股髌关节:由股骨的髌面和髌骨关节面构成屈戍关节。股胫关节头大,关节窝浅使两关节面不相适应,关节囊薄而松弛。
2、关节的辅助结构
(1)半月板:由2个纤维软骨板构成,垫在胫骨内、外侧髁关节面上,半月板外缘厚内缘薄。内侧半月板:呈“C”字形,前端窄后部宽,外缘中部与关节囊纤维层和胫侧副韧带相连。外侧半月板:呈“O”字形,外缘的后部与腘绳肌腱相连、前部与前交叉韧带相连。
作用:有加深关节窝,缓冲震动和保护膝关节的功能。
(2)翼状襞:位于髌骨下方的两侧,含有脂肪的邹襞。
作用:填充关节腔,增大关节稳固性,有缓冲震动功能。
(3)髌上囊和髌下囊:位于股四头肌腱与骨面之间。
作用:具有减少腱与骨面之间相互摩擦。
(4)加固关节的韧带
①前后交叉韧带:位于关节腔内,分别附着于股骨髁内侧面与胫骨髁间隆起。
作用:防止股骨和胫骨前后移位。
②腓侧副韧带:位于膝关节外侧稍后方。起于股骨外侧髁;止于腓骨小头。
作用:从外侧加固和限制膝关节过伸
③胫侧副韧带:位于膝关节的内侧偏后方。起于股骨内侧髁;止于胫骨内侧髁。
作用:从内侧加固和限制膝关节过伸
④髌韧带:位于膝关节的前方,为股四头肌腱延续部分。起于髌骨;止于胫骨粗隆。
作用:从前方加固和限制膝关节过度屈
(三)HGJ踝关节
1、基本结构:由胫骨下关节面和胫、腓的内、外踝关节面与距骨滑车构成屈戍关节。关节囊的前后壁薄而松弛,关节头前宽后窄。这样容易造成踝关节受伤。

2、辅助结构
①内侧韧带
位置:位于踝关节内侧的强大韧带。起于胫骨内踝,呈扇形向下;止于舟骨、距骨、跟骨的内侧。
作用:限制足过度外翻。
②外侧韧带有三条:距腓前韧带、距腓后韧带、跟腓韧带。
位置:起于腓骨外踝尖;止于距骨前、距骨后、跟骨。
特点:此韧带比较分散,较薄弱,过度内翻易损伤此韧带。例如球类、体操、田经等最多见外侧韧带损伤。
3、关节的运动特点
绕冠状轴作屈伸:勾足、绷足动作
内翻-— 足的内侧缘提起、外侧缘下降。
外翻----足的外侧缘提起、内侧缘下降。
XFJ斜方肌
(1)位于:颈部和背上部皮下,三角形阔肌,两侧相合斜方形。
(2)起止点:起于上项线、枕外隆凸,项韧带,第7颈椎和全部胸椎的棘突。上部止于锁骨外侧1/3,中部止于肩峰和肩胛冈上缘;下部止于肩胛冈下缘的内侧
(3)发展力量练习:飞鸟展翅,负重直臂、侧上举,提拉铃耸、肩,持哑铃扩胸。在儿童时期发展此肌,预防和矫正驼背。
2、XDJ胸大肌
(1)位于:胸廓前壁浅表,为扇形扁肌。
(2)起止点:锁骨部起于锁骨内侧半;胸肋部起于胸骨前面与第1—6肋软骨;腹部起于腹直肌鞘前璧上部。上下部肌纤维扭转180°换位交叉,止于肱骨大结节山嵴。
(3)辅助练习:仰卧推举发展该肌力量,拉力器练习发展伸展性。
3、BKJ背阔肌
(1)位于:腰背部皮下,上部被斜方加遮盖,是人体最阔肌。
(2)起止点:起自于下位6个胸椎和全部腰椎棘突、骶中嵴、髂嵴后部和10—12肋骨外面。上下部肌纤维扭转180°肌腱止于肱骨小结嵴
(3)辅助练习:引体向上、拉力器练习、拉象皮筋、爬杆等。
4、QJJ前锯肌
(1)位于:胸廓外侧面,为扁阔形肌肉。
(2)起止点:以第8—9个肌齿起于上 位第 8—9助的外侧面。上部肌纤维止于肩胛骨内侧缘;下部肌纤维止于肩胛骨下角前面
(3)辅助练习:推掌、冲 拳、推铅球

生物力学

生物固体力学是利用材料力学、弹塑性理论、断裂力学的基本理论和方法,研究生物组织和器官中与之相关的力学问题。在近似分析中,人与动物骨头的压缩、拉伸、断裂的强度理论及其状态参数都可应用材料力学的标准公式。但是,无论在形态还是力学性质上,骨头都是各向异性的。
20世纪70年代以来,对骨骼的力学性质已有许多理论与实践研究,如组合杆假设,二相假设等,有限元法、断裂力学以及应力套方法和先测弹力法等检测技术都已应用于骨力学研究。骨是一种复合材料,它的强度不仅与骨的构造也与材料本身相关。骨是骨胶原纤维和无机晶体的组合物,骨板由纵向纤维和环向纤维构成,骨质中的无机晶体使骨强度大大提高。体现了骨以最少的结构材料来承受最大外力的功能适应性。
木材和昆虫表皮都是纤维嵌入其他材料中构成的复合材料,它与由很细的玻璃纤维嵌在合成树脂中构成的玻璃钢的力学性质类似。动物与植物是由多糖、蛋白质类脂等构成的高聚物,应用橡胶和塑料的高聚物理论可得出蛋白质和多糖的力学性质。粘弹性及弹性变形、弹性模量等知识不仅可用于由氨基酸组成的蛋白质,也可用来分析有关细胞的力学性质。如细胞分裂时微丝的作用力,肌丝的工作方式和工作原理及细胞膜的力学性质等。
生物固体力学中关于骨的研究,可以追溯到19世纪,大量的研究者对骨组织进行了研究,直到19世纪末,Wollf提出了著名的Wollf's Law. 他认为骨组织是一种自优化的组织,其结构会随着外载的变化而逐渐变化,从而达到最优的状态。以后,研究者进行了大量研究,基于此定律提出了不少的理论及数学模型。其中较为著名教授有S.C Cowin ,D. R Carter , Husikes。在国内,吉林大学的朱兴华教授也做了大量工作。
生物流体力学
生物流体力学是研究生物心血管系统、消化呼吸系统、泌尿系统、内分泌以及游泳、飞行等与水动力学、空气动力学、边界层理论和流变学有关的力学问题。
人和动物体内血液的流动、植物体液的输运等与流体力学中的层流、湍流、渗流和两相流等流动型式相近。在分析血液力学性质时,血液在大血管流动的情况下,可将血液看作均质流体。由于微血管直径与红细胞直径相当在微循环分析时,则可将血液看作两相流体。当然,血管越细,血液的非牛顿特性越显著。
人体内血液的流动大都属于层流,在血液流动很快或血管很粗的部位容易产生湍流。在主动脉中,以峰值速度运动的血液勉强处于层流状态,但在许多情况下会转变成湍流。尿道中的尿流往往是湍流。而通过毛细血管壁的物质交换则是一种渗流。对于血液流动这样的内流,因心脏的搏动血液流动具有波动性,又因血管富有弹性故流动边界呈不固定型。因此,体内血液的流动状态是比较复杂的。
对于外流,流体力学的知识也用于动物游泳的研究。如鱼的体型呈流线型,且易挠曲,可通过兴波自我推进。水洞实验表明,在鱼游动时的流体边界层内,速度梯度很大,因而克服流体的粘性阻力的功率也大。小生物和单细胞的游动,也是外流问题。鞭毛的波动和纤毛的拍打推动细胞表面的流体,使细胞向前运动。精子用鞭毛游动,水的惯性可以忽略,其水动力正比于精子的相对游动速度。原生动物在液体中运动,其所受阻力可以根据计算流场中小颗粒的阻力公式(斯托克斯定律)得出。
此外,空气动力学的原理与方法常用来研究动物的飞行。飞机和飞行动物飞行功率由两部分组成:零升力功率和诱导功率。前者用来克服边界层内的空气粘性阻力;后者用来向下加速空气,以提供大小等于飞机或飞行动物重量的升力。鸟在空中可以通过前后拍翅来调节滑翔角度,这与滑翔机襟翼调节的作用一样。风洞已用于研究飞行动物的飞行特性,如秃鹫、蝙蝠的滑行性能与模型滑翔机非常相似。
运动生物力学
运动生物力学是用静力学、运动学和动力学的基本原理结合解剖学、生理学研究人体运动的学科。用理论力学的原理和方法研究生物是个开展得比较早、比较深入的领域。
在人体运动中,应用层动学和动力学的基本原理、方程去分析计算运动员跑、跳、投掷等多种运动项目的极限能力,其结果与奥林匹克运动会的记录非常相近。在创伤生物力学方面,以动力学的观点应用有限元法,计算头部和颈部受冲击时的频率响应并建立创伤模型,从而改进头部和颈部的防护并可加快创伤的治疗。
人体各器官、系统,特别是心脏—循环系统和肺脏—呼吸系统的动力学问题、生物系统和环境之间的热力学平衡问题、特异功能问题等也是当前研究的热点。生物力学的研究,不仅涉及医学、体育运动方面,而且已深入交通安全、宇航、军事科学的有关方面。
编辑本段中国研究
与中国传统医学结合
中国的生物力学研究,有相当一部分与中国传统医学结合。因而在骨骼力学、脉搏波、无损检测、推拿、气功、生物软组织等项目的研究中已形成自己的特色。
进行生物力学的研究首先要了解生物材料的几何特点,进而测定组织或材料的力学性质,确定本构方程、导出主要微分方程和积分方程、确定边界条件并求解。对于上述边界问题的解,需用生理实验去验证。若有必要,还需另立数学模型求解,以期理论与实验相一致。
其次作为实验对象的生物材料,有在体和离体之分。在体生物材料一般处于受力状态(如血管、肌肉),一旦游离出来,则处于自由状态,即非生理状态(如血管、肌肉一旦游离,当即明显收缩变短)。两种状态材料的实验结果差异较大。
说明
生物力学的研究要同时从力学和组织学、生理学、医学等两大方面进行研究,即将宏观力学性质和微观组织结构联系起来,因而要求多学科的联合研究或研究人员具有多学科的知识。

5、什么是生物活性玻璃

生物活性玻璃促进创面或糜烂面愈合的机理是什么 当生物玻璃植人体内时,局部的pH增加达PH10,在生物玻璃表面形成富硅层,然后在其表面形成钙磷层.钙磷来源于体液中的Ca, P及生物玻璃本身.这个Ca-P层属于一种活性炭化经基磷灰石 (Hydroxycarbonateapitite HCA )层,并形成一多孔网状结构的结合面.然后由来源于宿主软组织细胞和胶原纤维蛋白在网状结合面表面定植并融人富硅层.当愈合面扩大的同是生物活性玻璃材料也在不断降解.最终形成新的愈合面.研究表明,生物活性玻璃的表面活性和其降解产物能促进生长因子的生成,促进细胞的繁衍增长,活化细胞基因表达从而达到了对人体组织生成和生长的促进作用.

6、生物医学工程专业是文还是理科

“生物医学工程”是生物、化学、力学、机械、电子等的交叉学科,在有的学校是理科,有的学校是工科,但肯定只有理科生才能报考。
主要方向是仪器、图像、材料的原理,出路是医疗仪器研发、维修、销售或在学术上进一步深造。
学科内容
生物力学是运用力学的理论和方法,研究生物组织和器官的力学特性,研究机体力学特征与其功能的关系。生物力学的研究成果对了解人体伤病机理,确定治疗方法有着重大意义,同时可为人工器官和组织的设计提供依据。
生物力学中又包括有生物流变学(血液流变学、软组织力学和骨骼力学)、循环系统动力学和呼吸系统动力学等。生物力学在骨骼力学方面进展较快。
生物控制论是研究生物体内各种调节、控制现象的机理,进而对生物体的生理和病理现象进行控制,从而达到预防和治疗疾病的目的。其方法是对生物体的一定结构层次,从整体角度用综合的方法定量地研究其动态过程。
生物效应是研究医学诊断和治疗中,各种因素可能对机体造成的危害和作用。它要研究光、声、电磁辐射和核辐射等能量在机体内的传播和分布,以及其生物效应和作用机理。
生物材料是制作各种人工器官的物质基础,它必须满足各种器官对材料的各项要求,包括强度、硬度、韧性、耐磨性、挠度及表面特性等各种物理、机械等性能。由于这些人工器官大多数是植入体内的,所以要求具有耐腐蚀性、化学稳定性、无毒性,还要求与机体组织或血液有相容性。这些材料包括金属、非金属及复合材料、高分子材料等;轻合金材料的应用较为广泛。
医学影像是临床诊断疾病的主要手段之一,也是世界上开发科研的重点课题。医用影像设备主要采用 X射线、超声、放射性核素磁共振等进行成像。
X射线成像装置主要有大型X射线机组、X射线数字减影(DSA)装置、电子计算机X射线断层成像装置(CT);超声成像装置有B型超声检查、彩色超声多普勒检查等装置;放射性核素成像设备主要有γ照相机、单光子发射计算机断层成像装置和正电子发射计算机断层成像装置等;磁成像设备有共振断层成像装置;此外还有红外线成像和正在兴起的阻抗成像技术等。
医用电子仪器是采集、分析和处理人体生理信号的主要设备,如心电、脑电、肌电图仪和多参量的监护仪等正在实现小型化和智能化。通过体液了解生物化学过程的生物化学检验仪器已逐步走向微量化和自动化。
治疗仪器设备的发展比诊断设备要稍差一些。主要采用的是X射线、γ射线、放射性核素、超声、微波和红外线等仪器设备。大型的如:直线加速器、X射线深部治疗机、体外碎石机、人工呼吸机等,小型的有激光腔内碎石机、激光针灸仪以及电刺激仪等。
手术室中的常规设备已从单纯的手术器械发展到高频电刀、激光刀、呼吸麻醉机、监护仪、X射线电视,各种急救治疗仪如除颤器等。
为了提高治疗效果,在现代化的医疗技术中,许多治疗系统内有诊断仪器或一台治疗设备同时含有诊断功能,如除颤器带有诊断心脏功能和指导选定治疗参数的心电监护仪,体外碎石机中装备了进行定位的X射线和超声成像装置,而植入人体中的人工心脏起搏器就具有感知心电的功能,从而能作出适应性的起搏治疗。
介入放射学是放射学中发展速度最快的领域,也就是在进行介入治疗时,采用了诊断用的x射线或超声成像装置以及内窥镜等来进行诊断、引导和定位。它解决了很多诊断和治疗上的难题,用损伤较小的方法治疗疾病。
新时期各国竞相发展的高技术之一为医学成像技术,其中以图像处理,阻抗成像、磁共振成像、三维成像技术以及图像存档和通信系统为主。在成像技术中生物磁成像是最新
生物医学工程
发展的课题,它是通过测量人体磁场,来对人体组织的电流进行成像。
生物磁成像目前有二个方面。即心磁成像(可用以观察心肌纤维的电活动,可以很好地反映出心律失常和心肌缺血)和脑磁成像(用以诊断癫痫活动、老年性痴呆和获得性免疫缺陷综合征的脑侵入,还可以对病损脑区进行定位和定量)。
另一个世界各国竞相发展的高技术是信号处理与分析技术,其中包括心电信号、脑电、眼震、语言、心音呼吸等信号和图形的处理与分析。
高技术领域中还有神经网络的研究,世界各国的科学家为此掀起了一个研究热潮。它被认为是有可能引起重大突破的新兴边缘学科,它研究人脑的思维机理,将其成果应用于研制智能计算机技术。运用智能原理去解决各类实际难题,是神经网络研究的目的,在这一领域已取得可喜的成果。

7、为什么古生物的软组织能够形成化石

8、生物材料都有那些

生物材料用于人体组织和器官的诊断、修复或增进其功能的一类高技术材料,即用于取代、修复活组织的天然或人造材料。包括金属材料(如碱金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)和有机材料三大类。有机材料中主要是高分子聚合物材料,高分子材料通常按材料属性分为合成高分子材料(聚氨酯、聚酯、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等);

9、产物可能不具有生物活性.什么叫“生物

产物可能不具有生物活性
按材料功能划分: *1、血液相容性材料 如人工瓣膜、人工气管、人工心脏、血浆分离膜、血液灌流用吸附剂、细胞培养基材等; *2、软组织相容性材料 如隐形眼睛片的高分子材料,人工晶状体、聚硅氧烷、聚氨基酸等,用于人工皮肤、人工气管、人工食道、人工输尿管、软组织修补等领域; *3、硬组织相容性材料 如医用金属、聚乙烯、生物陶瓷等,关节、牙齿、其它骨骼等; *4、生物降解材料 如甲壳素、聚乳酸等,用于缝合线、药物载体、粘合剂等; *5、高分子药物多肽、胰岛素、人工合成疫苗等,用于糖尿病、心血管、癌症以及炎症等. 按材料来源分类: *1、自体材料 *2、同种异体器官及组织; *3、异体器官及组织; *4、人工合成材料; *5、天然材料根据组成和性质分为: * 1、生物医用金属材料 * 2、医用高分子材料 * 3、医用无机非金属材料生物医用金属材料较优秀的生物医用金属材料有,医用不锈钢、钴基合金、钛及钛合金、镍钛形状记忆合金、金银等贵重金属、银汞合金、钽、铌等金属和合金. ⑴医用不锈钢具有一定的耐腐蚀性和良好的综合力学性能,且加工工艺简便,是生物医用金属材料中应用最多,最广的材料. 常用钢种有US304、316、316 L、317、317L等. 医用不锈钢植入活体后,可能发生点蚀,偶尔也产生应力腐蚀和腐蚀疲劳.医用不锈钢临床前消毒、电解抛光和钝化处理,可提高耐蚀性. 医用不锈钢在骨外科和齿科中应用较多. ⑵钴基合金钴基合金人体内一般保持钝化状态,与不锈钢比较,钴基合金钝化膜更稳定,耐蚀性更好.在所有医用金属材料中,其耐磨性最好,适合于制造体内承载苛刻的长期植入件. 在整形外科中,用于制造人工髋关节、膝关节以及接骨板、骨钉、关节扣钉和骨针等.在心脏外科中,用于制造人工心脏瓣膜等. ⑶医用钛和钛合金不仅具有良好的力学性能,而且在生理环境下具有良好的生物相容性.由于其比重小,弹性模量较其他金属更接近天然骨,故广泛应用于制造各种能、膝、肘、肩等人造关节.此外,钛合金还用于心血管系统.钛合金耐磨性能不理想,且存在咬合现象,限制了其使用范围. 生物医用高分子按应用对象和材料物理性能分为软组织材料、硬组织材料和生物降解材料.其可满足人体组织器官的部分要求,因而在医学上受到广泛重视.目前已有数十种高分子材料适用于人体的植入材料. * 软组织材料:故主要用作为软组织材料,特别 是人工脏器的膜和管材.聚乙烯膜、聚四氟乙烯膜、硅橡胶膜和管,可用于制造人工肺、肾、心脏、喉头、气管、胆管、角膜.聚酯纤维可用于制造血管、腹膜等. * 硬组织材料:丙烯酸高分子(即骨水泥)、聚碳酸醋、超高分子量聚乙烯、聚甲基丙烯酸甲脂(PMMA)、尼龙、硅橡胶等可用于制造人工骨和人工关节. * 降解材料:脂肪族聚醋具有生物降解特性,已用于可接收性手术缝线. 生物医用无机非金属材料生物无机材料主要包括生物陶瓷、生物玻璃和医用碳素材料. 按植入生物活体内引起的组织与材料反应,生物陶瓷分为: ⑴近于惰性的生物陶瓷,如氧化铝生物陶瓷、氧化锆生物陶瓷、硼硅酸玻璃; ⑵表面活性生物陶瓷,如磷酸钙基生物陶瓷、生物活性玻璃陶瓷; ⑶可吸收性生物陶瓷,如偏磷酸三钙生物陶瓷、硫酸钙生物陶瓷. 生物活性玻璃陶瓷植入活体后,能够与体液发生化学反应,并在组织表面生成羚基磷灰石层,故可用于人工种植牙根、牙冠、骨充填料和涂层材料. 与自然骨比较,生物活性玻璃陶瓷虽然具有较高的强度,但韧性较差,弹性模量过高,易脆断,在生理环境中抗疲劳性能较差,目前还不能直接用于承力较大的人工骨. 医用碳素材料:具有接近于自然骨的弹性模量. 医用碳素材料疲劳性能最优,强度不随循环载荷作用而下降.无序堆垛的碳材料耐磨性理想. 医用碳素材料在生理环境中较稳定,近于惰性,具有较好的生物相容性,不会引起凝血和溶血反应,特别适合于在生理环境中使用. 医用碳材料已大量用于心血管系统的修复,如人工心脏瓣膜、人工血管.还可作为金属和聚合物的涂层材料. 生物医用复合材料生物医用复合材料是由二种或二种以上不同材料复合而成的. 按基材分为:高分子基、陶瓷基、金属基等生物医用复合材料. 按增强体形态和性质分为纤维增强、颗粒增强、生物活性物质充填生物医用复合材料. 按材料植入体内后引起的组织与材料反应分为:生物惰性、生物活性和可吸收性生物医用复合材料.

10、理想口腔粘接材料应该具备哪些性能

(1)良好的生物学性能:
①组织相容性,指材料植入后与机体软、硬组织及体液接触时,具有良好的亲和关系。
② 生物力学相容性,硬组织及体液接触时,材料的力学性能(弹性模量等参数)与骨组织相近,以避免种植体受力时在与骨组织的界面上形成过大应力集中。
(2)良好的机械性能:种植技术是建立在近代机械加工的发展基础之上的。良好的加工性能才能满足形态设计的需要,咬合是牙的基本功能,种植体能够承载静态和动态咀嚼咬合力,不致在漫长的使用过程中发生折断、变形、磨损。
(3)良好的加工成形性能:临床上大量使用外形尺寸一致,表面加工精细的标准化种植体,有时也针对个体解剖形态特点用种植材料个别制作,以恢复缺损的硬组织。
(4)良好的耐消毒灭菌性能:种植体在植入前必须严格地施行消毒灭菌,因此要求所用的种植材料不会因高压、高温、各种消毒液体和气体的浸泡熏蒸、紫外线和γ射线照射等处理而发生变性,又不会滞存残量消毒物质,以保证种植手术的安全和成功。

与生物软组织及其力学性能相关的内容