1、地幔柱理论的提出
地幔柱构造(Mantle plumes tectonics)的概念源自热点构造。尽管 Wilson(1963)提出的热点假说主要用于解释夏威夷群岛次火山的成因,但却引起了地质学家的广泛兴趣,并逐渐发展成地幔热柱(Mantle plume)理论,尤其是日本地质学会学报(J.Geol.Soc.Japan,1994,100(1))集中发表的 Fukao,Maruyama,Kumazawa 等学者的文章,从地质学、地球物理学等方面探讨了幔柱构造(Mantle plume tectonics)。英国地质学会学报(J.Geol.Soc.1995,152(6))集中讨论了冰岛地幔热柱及其有关的区域地质背景、大陆开裂、岩浆作用、化学成分、同位素特征等(Nadin,Barton,Fitton,Kont)。中国中青年地质学家(侯增谦等,李红阳等,王登红,牛树银等,卢记仁)还专门组织了专题性研讨(地球学报,1996(4))。进 入 新 世纪,地 幔热柱 研究 已 形 成 热 潮(谢鸿森 等,2005; 舒良 树 等,2006; 徐义 刚 等,2007; 杨文采 等,2007; Aiqun Sun 等,2005; Anderson 等,2005;Baode Wang 等,2005; Shuyin niu 等,2005; Tachibana 等,2006; Davies 等,2006; Par-kin 等,2007; Pik 等,2008),但仍以理论的探索为热点,以夏威夷、冰岛等热点地区研究更多(Sheth,1999; Ursula 等,1999; Keller 等,2000; Lapierre 等,2000; Pirajno,2000)。地幔热柱成矿作用方面的 研究相对较少,Oppliger(1997)等提出内华达盆 区(the Great Basin of Nevada)卡林型金矿可能与黄石热点有关,Hedenquist(1998)等认为菲律宾的某些斑岩型和浅成低温热液型铜金矿床与幔柱有关。国内则认为白云鄂博、华南等地的某些矿种与地幔热柱有关(曹荣龙,1996; 王登红,1998,2007; 黎盛斯,1996;毛景文等,2006),看来,越来越多的学者已经认识到,地幔热柱多级演化应该是幔壳演化及多金属成矿作用的重要控制因素。
地幔柱构造的基本涵义是深部地幔热对流过程中,一股上升的圆柱状热塑性物质流从核幔交界处或下地幔涌起,并穿透岩石圈而成的热地幔物质柱状体,称为地幔热柱。它在洋底出露时就表现为热点。热点上的地热流值大大高于周围广大地区,甚至会形成孤立的火山,如非洲大陆板块内的东非阿法尔区和太平洋板块内的夏威夷火山区。地幔热柱观点的基本理论可以归纳为:①地幔热柱的根在深部地幔或核幔边界; ②垂直上升的地幔热柱到达岩石圈底部时,其物质流动方向变为水平方向,导致火山活动和岩石圈凸起; ③与地幔热柱集中的上升流相平衡的回流,通过地幔其他部分缓慢向下运动,称地幔冷柱; ④放射性流体施加给岩石圈板块的力和岩石圈板块边界相互制约产生的力,确定了岩石圈板块的运动方向。
1963 年,加拿 大地质学家 Wilson 解释 固定 热 地 幔 源 区 夏威夷群 岛 火 山 成 因(图 1-1),美国普林斯顿大学、加利福尼亚大学、科罗拉多大学以及台湾国立大学的地球物理学家运用从全球 3 000 个地震监测站采集到的地震波数据,对地球的内部结构进行了研究。这些监测站监视记录了自 1964 年以来发生的 86 000 次地震。科学家分析了地震体波的速度变化,并根据这些数据绘制出了一张三维地形图。他们注意到,在这张非常清晰的地图上,地球地幔上有凸起的柱状体———地幔热柱。全球板块理论创始人之一的Morgan(1974)则认为 Wilson(1963)所指出的固定热地幔源区实际上是一个产生于地幔底部边界附近的热幔柱。Deffeys(1972)提出了热幔柱是下地幔上涌形成的观点。An-derson(1975)研究则表明热幔柱与其说是热柱,不如说是一种化学柱。它的化学成分与周围地幔物质有明显差别,它来源于地幔底部 D″层(即核-幔边界)。D″层从地核那里聚集大量放射性元素,放射热导致 D″层具有高温、低黏度特征,从而产生热幔柱。Maruy-ama(1974)等日本学者则根据 P 波层析成像技术测得全地幔内部结构,并以 2 900 km,670 km 和 100 km 深度为界划分出地幔热柱的一、二、三次柱(图 1-2)。
图 1-1 夏威夷-皇帝海岭火山链及其形成过程图示
图 1-2 地幔热柱结构示意图(据 Maruyama 等,1994,有修改)
至于地球上有多少个地幔热柱,不同的研究者有不同的认识,已划分出的热点(热柱)大致在 3~117 个,已鉴别的约 50 个,冷柱约 10 个。而 Maruyama(1994)认为地球上仅有 3 个超级地幔柱,其中 2 个是热地幔柱,一个在南太平洋,另一个在非洲; 1 个是冷幔柱。现代地球上的约 50 个地幔柱中的大多数可按由非洲和南太平洋超级地幔柱,或中央原始地幔柱链的分支地幔柱来解释。主要分布在于北极、冰岛、亚速尔群岛、西非、南非和库吉伦。
通过现代化测试技术,地幔热柱不但能够直接观察到,而且也存在很多间接证据。其中包括:①局部高热流值和相关的火山活动(热点)出现在远离板块边界的地方; ②热点不随板块漂移而迁移,几乎静止不动,暗示起源于活动岩石圈之下的深部地幔; ③热点火山玄武岩的地球化学性质不同于位于离散板块边界、起源于浅部地幔的玄武岩(如 MORB),说明其源区为比软流圈更深的地幔库; ④位于热点之上的大洋岛屿通常具有规模较大的地形隆起,这需要有额外的幔源热能以使岩石圈膨胀; ⑤最令人信服的证据来自最近的地震学研究。例如地震层析揭示冰岛地幔存在一低速柱状物质流,至少延伸至400 km以下,地幔热柱的直径为300 km; ⑥高温可能是造成地幔热柱中低速物质的主要原因。
2、脊椎是什么意思
意思指脊椎动物体内构成脊柱的椎骨。
脊椎 jǐ zhuī
脊椎一般指脊柱。
人类脊柱由33块椎骨(颈椎7块,胸椎12块,腰椎5块,骶骨、尾骨共9块)借韧带、关节及椎间盘连接而成。脊柱上端承托颅骨,下联髋骨,中附肋骨,并作为胸廓、腹腔和盆腔的后壁。脊柱具有支持躯干、保护内脏、保护脊髓和进行运动的功能。
功能:
脊柱为人体的中轴骨骼,是身体的支柱,有负重、减震、保护和运动等功能。
支持和保护功能
人体直立时,重心在上部通过齿突,至骨盆则位于第2骶椎前左方约7cm处,相当于髋关节额状轴平面的后方,膝、踝关节的前方。脊柱上端承托头颅,胸部与肋骨结成胸廓。上肢借助肱骨、锁骨和胸骨以及肌肉与脊柱相连,下肢借骨盆与脊柱相连。上下肢的各种活动,均通过脊柱调节,保持身体平衡。脊柱的四个生理弯曲,使脊柱如同一个弹簧,能增加缓冲震荡的能力,加强姿势的稳定性,椎间盘也可吸收震荡,在剧烈运动或跳跃时,可防止颅骨、大脑受损伤,脊柱与肋、胸骨和髋骨分别组成胸廓和骨盆,对保护胸腔和盆腔脏器起到重要作用。另外,脊柱具有很大的运动功能。
运动功能
脊柱除支持和保护功能外,有灵活的运动功能。虽然在相邻两椎骨间运动范围很小,但多数椎骨间的运动累计在一起,就可进行较大幅度的运动,其运动方式包括屈伸、侧屈、旋转和环转等项。脊柱各段的运动度不同,这与椎间盘的厚度、椎间关节的方向等制约因素有关。骶部完全不动,胸部运动很少,颈部和腰部则比较灵活。人在立正姿势时,通过身体所引的垂直重力线经过颈椎体的后方,在第7颈椎和第1胸椎处通过椎体,经胸椎之前下降,再于胸腰结合部越过椎体,经腰椎后方并穿过第4腰椎至骶骨岬再经骶骨前方、骶髂关节而传至下肢。脊柱的弯曲,特别是颈曲与腰曲,随重力的变化而改变其曲度。
脊柱背侧主要为肌肉,脊柱周围的肌肉可以发动和承受作用于躯干的外力作用。直接作用于腰背部脊柱的肌肉有背肌、腰肌。背肌分浅层和深层:浅层包括背阔肌、下后锯肌,深层包括骶棘肌、横突棘肌、横突间肌、棘突间肌;腰肌包括腰方肌和腰大肌。
间接作用于腰脊部脊柱的肌肉有腰前外侧壁肌、臀大肌、臀中肌、臀小肌、股二头肌、半腱肌及半膜肌等。
3、中国星占术的三大理论支柱是什么?
中国星占术有复三大理论支制柱是:天人感应论、阴阳五行说和分野说。天人感应论认为天象与人事密切相关,所谓“天垂象,见吉凶”,“观乎天文以察时变”(易经)。阴阳五行说把阴阳和五行二类朴素自然观与天象变化和“天命论”联系起来,以为天象的变化乃阴阳作用而生,王朝更替相应于五德循环。分野说是将天区与地域建立联系,发生于某一天区的天象对应于某一地域的事变。
4、脊椎柱 脊椎骨 脊椎的概念
脊椎动物(Vertebrata )
脊索动物门中的脊椎动物亚门动物的总称。数量最多,结构最复杂,进化地位最高。形态结构彼此悬殊,生活方式千差万别。除具脊索动物的共同特征外,其他特征还有:①出现明显的头部,中枢神经系统成管状,前端扩大为脑,其后方分化出脊髓。②大多数种类的脊索只见于发育早期(圆口纲、软骨鱼纲和硬骨鱼纲例外),以后即为由单个的脊椎骨连接而成的脊柱所代替。③原生水生动物用鳃呼吸,次生水生动物和陆栖动物只在胚胎期出现鳃裂,成体则用肺呼吸。④除圆口纲外,都具备上、下颌。⑤循环系统较完善,出现能收缩的心脏,促进血液循环,有利于提高生理机能。⑥用构造复杂的肾脏代替简单的肾管,提高排泄机能,由新陈代谢产生的大量废物能更有效地排出体外。⑦除圆口纲外,水生动物具偶鳍,陆生动物具成对的附肢。该亚门包括:圆口纲、软骨鱼纲、硬骨鱼纲、两栖纲、爬行纲、鸟纲和哺乳纲。各纲的特征虽然有显著差别,但组成躯体的器官系统及其功能基本一致。
脊椎动物 盾皮类是戴盔披甲的鱼类,它们是甲胄和化石无合类不同,是由覆盖头部的头甲和包裹躯干的躯甲两个单元组成,展出的东生清鳞鱼就是很好的例子,盾皮类是一支古老的有合脊椎动物,和其它鱼类及高等脊椎动物一样,最前面的鳃弓发展成摄取食物的合,合上装备了牙齿。合的出现是脊椎动物进化中的一次重大革命,无合类只能被动地过滤水中的细小有机体,而有合类可用合主动摄取食物。盾皮类是一个种类繁纷的家族,在泥盆纪为其全盛时期,但随着泥盆纪的结束而趋于消亡。展出的云南鱼、武定鱼、般溪鱼,是部份不同种类的盾皮类的头甲。
鱼类中获得最大成功的要属硬骨鱼和软骨鱼类,二者在泥盆纪时虽在种类和数量上还远不能与无颌类的盾皮类匹比,在随后的时间里它们欲日益繁盛,现生的鱼类都属于这两类。
硬骨鱼类的一支,称为肉鳍类,包括终鳍类的肺鱼,因为它们的鳍具有发达的肉质柄,柄 内的骨骼和高等脊椎动物的四肢骨相似,所以科学家们相信它们中的一支是四足脊椎动物的祖先,在泥盆纪晚期发展出两栖类。因此早期终鳍鱼类特别受到古生物学家的青睐。发现于中国云南早泥盆世的著名的扬氏先驱鱼乃是当前所知最早的终鳍类代表。肉鳍类在中晚泥盆世甚是繁盛,以后逐渐衰落,现在残存的仅有南美洲肺鱼、澳洲肺鱼和极为罕见的终鳍类拉蒂曼鱼。
另一支硬骨鱼类在古生代时身体都覆盖厚重的菱形鳞片,因为鳞片表面敷以发亮的名为硬质的物质,所以它们被称为硬鳞鱼类。像吐鲁番鳕、长兴鱼、重庆鱼、中华弓鳍鱼都是这类的代表。至中生代后期,硬鳞鱼类日趋衰落,现在还生存的硬鳞鱼极为稀少,生活在中国长江的中华鲟堪你硬鳞鱼类中的活化石,被列为国家一级保护动物。
在生存竞争、优胜劣汰的自然规律下,到中生代后期硬鳞鱼逐渐被它们的后裔真骨鱼取代。真骨鱼类的鳞片由于硬质退化只保留骨质基屑,因此薄而富有韧性,既不失去鳞片保护作用,又拥脱了硬鳞的沉重负担,增加了灵活性。所以从中生代后期至今,真骨鱼类的进化中不断完善自己,长盛不衰,由海洋到江湖河流无处不在,成为世界上最宠大的脊椎动物。展现中的狼鳍鱼和昆都伦鱼都是原始的真骨鱼类代表。
软骨鱼类除了覆盖身体的细小盾鳞,所有骨胳都是由软骨组成,从不骨化。现海洋中的各种鲨鱼和银鲛,就是这类鱼的代表。软骨鱼类从泥盆纪出现至今,在数量上一直没有大起大落,只有少数种类在古生代后期至中生代早期曾入侵到淡水中。软骨鱼类局限于海洋。软骨鱼类所以能够一直延续下来,是得益于它们是个内受精和富含蛋黄的卵,这是繁衍后代的有力保证。因为软骨鱼类骨骼为软骨性,在化石中不易保存,所以常见的化石是牙齿和鳞片。展出的中华旋齿鲨,乃是其齿旋的一部份,这类牙齿旋的一部份,这类牙齿在西藏珠峰也有发现。
脊椎动物起源可能分五步
王百战 高立勋
2003年2月28日美国《科学》杂志发表西北大学、中国地质大学教授舒德干等研究者与英、日等国学者合作完成的重要成果《云南虫类的一个新种及其对后口动物演化的重要意义》。该成果的发布,标志着脊椎动物实证起源研究取得了进一步的重要进展。
高阶元生物类别的起源历来是进化生命科学的核心命题。包括人类在内的脊椎动物谱系总根底起源,涉及到脊椎动物两大类群间的演化关系,因而不仅是学术界长期探索的一个焦点问题,也是大众普遍关注的一个科学热点。现代动物学从各个不同层次进行探索,近年来取得了较为广泛认同的脊椎动物起源分“四步走”的假说。该假说认为,在动物演化大树的两大基本分支谱系中,位于后口动物谱系顶端的脊椎动物与原口动物谱系没有直接联系,它根植于后口动物脊椎系的演化轮廓是:从现在最低等的后口动物棘皮动物和半索动物为始点,先后经由仅在尾部具有脊索的尾索动物和脊索纵贯全身的头索动物,最后通过脊椎和头部构造的出现,诞生出该谱系的终端产物脊椎动物。然而学术界的共识是,这一基于现代动物学信息间接推测出来的假说到底是否可靠,还必须得到真实历史资料的检验、修正和补充。
要在古生物学上进行有效的脊椎动物起源研究,应该以现代动物学信息为重要线索,在尽可能靠近脊椎动物起源的“源头”时段探寻时做好两件工作:首先是力求发现最古老、最原始的脊椎动物,接着便是以这些脊椎动物始祖为起点,向前逐步追溯它们在无脊椎后口动物中的完善的祖先序列。我国保存了五亿三千万年前的众多精美后口动物软躯体构造化石的澄江化石库,恰好靠近这样的“源头”。为中国学者揭开这一谜团提供了一个难得的机遇。
1999年昆明鱼和海口鱼的发现被英国《自然》杂志评论为“逮住第一鱼”,为难题的破解投进了一缕曙光。2003年初,舒德干等人再度在《自然》杂志著文,他们通过对数百枚海口鱼标本的深入研究,揭示出它们一方面已经开始演化出原始脊椎骨和眼睛等重要头部感官,另一方面却仍保留着无头类的原始性器官,从而证实了它们不仅是已知最古老的脊椎动物,而且还属于地球上一类最原始的脊椎动物。早期后口动物的系列性发现,不仅与现代动物学关于脊椎动物起源分“四步走”假说相一致,更重要的是添加了比这“四步走”更为原始的“第一步”,从而首次提出了脊椎动物起源至少分“五步走”的新假说。这些始见于澄江化石库地层最底部的“第一步”动物群古虫类和云南虫类,是一些创生出咽腔型鳃系统的原始分节后口动物,极可能代表着学术界期盼已久的原口动物和后口动物分节的共同祖先与由于躯体特化而丧失分节性的后口动物(包括棘皮动物和半索动物)之间的过渡类型。十分有趣的是,尽管它们由于咽鳃的出现而引发了动物体在取食、呼吸等新陈代谢方式的重大革新而成为真正的后口动物,但其躯体却仍保留着其祖先的分节性特征。舒德干解释说:“实际上,既出现创新特征又继承祖先某些原始性状的镶嵌演化是生物界一种十分常见的现象。”
在这分“五步走”的演化系列中,“第一步”的动物类群十分奇特:对1400多枚海口虫标本进行比较解剖学研究表明,它们不仅缺少脊索构造,而且在皮肤、肌肉、呼吸、循环、神经等器官系统上与脊索动物存在着根本区别;其中最为独特的是其由6对外鳃组成的呼吸系统,这与较为高等的后口动物的内鳃迥然有别。海口虫与同处“第一步”的古虫动物门在躯体构型上却相当一致:两者皆明显分节,而且躯体也都呈独特的“双重二分型”,即身体沿纵轴分为前体和后体两大部分,而前体又被一个能自由扩张的“中带”构造分为背、腹两个单元。所不同的是,海口虫兼具背神经索和腹神经索,这显示出它比古虫动物门稍略进步些,从而更靠近“第二步”中的半索动物。
舒德干指出,尽管我们提出了脊椎动物起源分“五步走”的新假说,但这仍只给出了一个演化轮廓,在其相邻演化步骤之间仍缺乏中间环节的证据。
分类
动物界:脊椎动物 无脊椎动物
脊椎动物:鱼纲 两栖纲 爬行纲 鸟纲 哺乳纲
无脊椎动物:原生动物门 多孔动物门 腔肠动物门 扁形动物门 线形动物门 环节动物门 软体动物门 棘皮动物门 节肢动物门
爬行纲
喙头目(楔齿蜥)、龟鳖目(龟)、有鳞目(蜥蜴)和鳄
鱼纲
板鳃亚纲(Elasmobranchii);鳃裂5对,鳃间隔宽大,板状,如各种鲨、鳐。
全头亚纲(Holocephali):头大而侧扁,鳃裂4对,上颌骨与脑颅愈合,故称全头类,如我国产的黑线银鲛(Chimaeraphantasma)。
二、硬骨鱼系(Osteichthyes)骨骼一般为硬骨,体被骨鳞,少数种类为硬鳞或无鳞。口位于头部前端,有骨质鳃盖,肠内常无螺旋瓣,多数有鳔。一般体外受精,卵生。海淡水均产,常分三个亚纲:
肺鱼亚纲(Dipnoi)具有内鼻孔,除用鳃呼吸外,还能以鳔代替肺呼吸。现存的种类全世界仅三属,如分布南美洲、非洲和澳洲的肺鱼。
总鳍亚纲(Crossopterygii):偶鳍为带鳞的肉叶,内部骨骼的排列与陆生脊椎动物肢骨的排列极为近似,是动物界“活化石”之一,如矛尾鱼(Latimeriachalumnae)。
辐鳍亚纲(Actinopterygii):占现代鱼类的90%以上,骨骼系统几乎全由硬骨组成,鳍条呈辐射状,无内鼻孔,体被圆鳞或栉鳞。现将我国重要经济鱼类及名贵珍稀鱼类所属的目,简介如下:
鲟形目(Acipenseriformes):吻长,口在吻的腹面,体表棵露或覆有5行纵列的硬鳞(硬甲),骨骼大多为软骨,因而又称软骨硬鳞鱼。本目都是名贵珍稀鱼类,因当前数量稀少,已列为保护对象。例如,中华鲟(Acipenser。sinensis)主要分布于长江中下游水域,近年来四川省试验拴养和人工催产获得成功,为驯化定居,扩大养殖对象作了良好的准备。此外,还有分布于长江和黄河流域的白鲟(Psephurusgladius)以及黑龙江流域的史氏鲟(A.schrenski)等。
鲱形目(Cluupeiformes):头骨骨化不完全,尚保留软骨,背鳍无硬棘,鳍条柔软分节,所以也称软鳍类;因所有的椎骨构造都相同,故又称等椎类,鳔管发达,体被圆鳞,如鲥鱼(Hilsareeuesii)、鲱鱼(Clupeapallasi)、鲚(Coiliomystus)、大银鱼(Prootosalanxhyalocranius)、大麻哈鱼(Oncorhynchusketa)等,均为名贵鱼类。
鳗鲡目(Aaguilliformes):体呈棍棒形,体前部圆而后部侧扁,一般无腹鳍,背、臀、尾三鳍完全相连。鳞小或无,如鳗鲡(Anguillajaponica)。鳗鲡为降河洄游性鱼类,在淡水中生长,入海产卵,是一种食用价值较高的经济鱼类,在我国和日本成为养殖对象。
鲤形目(Cypriniformes):为鱼纲中第二大目,具有韦伯氏器(为内耳与鳔连系的一种器官),有鳔管,体被圆鳞或裸露,如青鱼(Mglopharyngodonpiceus)草鱼(鲩)(Cten-opharyngodonidellus)、鲢(Hypophthalmichysmolitrix)、鳙(Aristichthysnobilis)等四大家鱼,此外还有鲤鱼(Cyprinuscarpio)、鲫鱼、团头鲂(Megalobramaamblycepha-la)、泥鳅(Misgurnusanguillicaudatus)等都是淡水养殖中常见的鱼类。
鲈形目(Percifofmes):为鱼纲中最大的一个目,绝大多数生活在海水中,通常有两个背鳍,多数被栉鳞,无鳔管。我国海产食用鱼类多属本目,如大黄(花)鱼(Pseudosciaenacrocea)、小黄(花)鱼(P.polyctis)、带鱼(Trichiurushaumela),连同软体动物中的乌贼合称“四大海产”。其他还有鲈鱼(Lateolabraxjaponicus)、鳜鱼(Sinipercachuatsi)(淡水产)。鲐鱼(Pneumatophorusjaponicus)、银鲳(Stromateoidesargenters)以及引入的尼罗罗非鱼(Tilapianilotica)等。
此外,常见的经济鱼类还有:鳢形目(Ophiocephaliformes)的乌鳢(Ophiocephalusargus)、合鳃目(Symbranchiformes)的黄鳝(Monopterusalbus)、鲽形目(Pleuroecti-formes)的牙鲆(Paralichthysolivaceus)、鲀形目(Tetraodontiformes)的虫纹东方鲀(Fnguvermicularis)等。
两栖纲
无足目、有尾目和无尾目。
无足目或称裸蛇目(Gymnophiona),为原始的,同时又是极端特化的一类。特化的构造是和它们营地下穴居的生活方式相联系的。外形似蚯蚓或蛇,尾短或无尾,无四肢及带骨。皮肤裸露,有许多环状皱纹,富于粘液腺。眼睛退化,隐于皮下,实际上是盲目的,但在眼睛和外鼻孔之间有一能收缩的触角,可以收缩进一特殊的凹陷内,很敏感,有助于钻穴活动。听觉器官中没有鼓膜,听神经退化。嗅觉发达。体内受精,雄性的泄殖腔能向外突出,起着交配器的作用,能将精液输入雌体内。脊椎骨的数目很多,蚓螈多达250块。
无足类除具有上述的特化性特征外,还具有一系列原始性特征,如蚓螈(Caecilia)有退化的骨质鳞陷在真皮之内,外表并不显露,这代表着古代坚头类体表鳞甲的遗迹。现代的有尾类和无尾类体表光滑无鳞,只有无足类尚保存着这种种承前的原始性特征。此外,椎骨为双凹型,无胸骨,心房间隔发育不完全,头骨膜原骨非常发达和坚头类有相似之处,这些特征皆反映出其原始性。
本目多数种类终生栖于水中,也有些种类变态后离水而栖于湿地。体长形,多数具四肢,少数种类仅具前肢。尾很发达,且终生存在。有些种类身体两侧具明显的侧线。皮肤裸露无鳞片,富于皮肤腺。水栖的种类眼睛小,无活动的眼睑。脊椎骨的数目很多,有些种类脊椎骨多达100块。椎体为双凹型或后凹型,躯椎具不发达的肋骨。有些种类尚没有荐椎的分化。腰带连接脊柱的部位尚不固定,如泥螈(Necturus)的腰带有些连在第18椎骨上,有些连在第19或第20椎骨上,甚至一侧连第18,另一侧连第19椎骨上。这说明后肢支持身体的能力较弱。肩带与腰带大部分仍为软骨,肩带完全缺少膜原骨,锁骨也不存在。有尾类中有些种类,如洞螈(Proteus)、三指螈(Amphiuma)等,不具胸骨;有些种类虽具胸骨,但仅是一块简单的软骨板(如蝾螈),或仅是在肩带区肌隔上一些零散的软骨化中心。前肢的桡骨与尺骨,后肢的胫骨与腓骨分离,都不象青蛙那样愈合成桡尺骨与胫腓骨。
多数有尾类幼时用鳃呼吸,成体用肺呼吸;也有些种类终生具鳃,肺很不发达或无肺,而皮肤呼吸和口咽腔呼吸却占有重要地位。循环系统比较原始,无肺的低级有尾类,心房尚未分隔,多数有尾类的心房间隔不完整,在间隔上有些穿孔,使左右心房相通。心室中无海绵状的肌肉网柱,动脉圆锥中也无螺旋瓣。不少有尾类和无尾类的蝌蚪一样,保存着4对动脉弓,相当于胚胎期的第III、IV、V、VI对动脉弓。在静脉系统中,既有后腔静脉,又终生保留着后主静脉,显示了比无尾类更为原始的性质。
无尾目是现存两栖类中结构最高级、种类最多且分布最广的一类。体形宽短。具发达的四肢,后肢特别强大,适于跳跃。成体无尾。皮肤裸露,富于粘液腺,有些种类具有发达的毒腺。具可活动的下眼睑及瞬膜。鼓膜明显,鼓室发达。椎体前凹型、后凹型或参差型。一般不具肋骨。头骨的额骨和顶骨愈合成额顶骨。肩带分为弧胸型和固胸型两种类型。具锁骨和胸骨。桡骨与尺骨愈合成桡尺骨,胫骨与腓骨愈合成胫腓骨。成体以肺呼吸,绝无外鳃或鳃裂。成体一般营水陆两栖生活,但生殖时必须回到水中。雄性大多具声囊,不具交配器,通常为体外受精。幼体称蝌蚪。蝌蚪从外形到内部结构都和鱼近似,仍以鳃呼吸,以鳍游泳。蝌蚪经变态后转变为陆生类型的成体。
无尾两栖类的分类标准主要是根据肩带类型、椎体类型以及外部形态特征,包括声囊、舌、牙齿、指趾末端、皮肤光滑或粗糙、皮肤褶以及身体颜色等。
本目在全世界有16科167属2600余种,我国有7科23属172种,约占世界种类的6%。
编辑本段概念
脊椎动物依次 顺序为:鱼类——两牺类——爬行类——鸟类——哺乳类
两牺类:
有尾无四肢,幼体用腮呼吸,生活在水中。它们成体生活在陆地或水中,无尾有四肢,主要用肺,在水中时,可以用皮肤呼吸。卵生动物,体温不恒定。
常见动物:蛙,蝾螈,大鲵(娃娃鱼)等
爬行类:
皮肤表面有角质鳞片或甲,用肺呼吸,卵生动物,陆地生活,体温不恒定。
常见动物:陆龟,变色龙,鳄鱼等
鸟类:
体形特点:身体呈纺锤形,前肢特化为翼,体表有羽毛,体温恒定,胸肌发达,骨骼愈合,薄,中空,脑比较发达。卵生动物
有喙无齿,身体表面有羽毛,用肺呼吸,大都能够飞翔。
常见动物:鸭子,家鸽,鹅,鹦鹉等
哺乳动物:
全身被毛,体温恒定,胎生,哺乳,用肺呼吸。
蝙蝠 是 哺乳动物中,唯一能够飞翔的动物。
哺乳动物是所有的动物中最高级的动物。
最早的哺乳动物大约出现在2亿年前,目前它们是动物界中分布最广,功能最完善的动物。
5、现代生命科学的四大理论支柱是什么?
网络
一分钟了解生物学00:54
生物学上的现代人类01:14
秒懂生命科学-来画出品:14
初中生物学中的动物类群,掌握各个动物类群的形态结构特征06:55
教授买下12000㎡山谷,一个人住04:54
生物学[shēng wù xué]
自然科学六大基础学科之一
本词条是多义词,共2个义项
生物学是研究生物(包括植物、动物和微生物)的结构、功能、发生和发展规律的科学,是自然科学的一个部分。目的在于阐明和控制生命活动,改造自然,为农业、工业和医学等实践服务。几千年来,中国在农、林、牧、副、渔和医药等实践中,积累了有关植物、动物、微生物和人体的丰富知识。1859年,英国博物学家达尔文《物种起源》的发表,确立了唯物主义生物进化观点,推动了生物学的迅速发展。[1]
中文名
生物学
外文名
Biology
类别
自然科学
学科分类
细胞学、遗传学、生理学、生态学
研究内容
生物体生命活动规律
快速
导航
研究对象研究方法研究意义学科分支主干课程其它相关发展前景
学科起源
在自然科学还没有发展的古代,人们对生物的五光十色、绚丽多彩迷惑不解,他们往往把生命和无生命看成是截然不同、没有联系的两个领域,认为生命不服从于无生命物质的运动规律。不少人还将各种生命现象归结为一种非物质的力,即“活力”的作用。这些无根据的臆测,随着生物学的发展而逐渐被抛弃,在现代生物学中已经没有立足之地了。
约公元前15000年在随后的5000年中,法国人在拉斯考克斯(Lascaux)制作了山洞画,这些画表明我 们的祖先已在观察生物世界。这些画上有野牛、鹿和其他动物。
约公元前2650年人们确认,埃及医生伊姆荷太普(Imhotep)从自然现象中寻找疾病的原因。[2]
约公元前2000年在尼罗河流域发现的纸草文献中,已记录了治疗创伤和疾病的信息。
约公元前1750年巴比伦国王汉莫拉比(Hammurabi)制定了与行医相关的法律,并雕刻在石柱上。这些法律详述了有关费用的规定和对于治疗失误的严厉惩罚,如因治疗事故使1位患者死亡而被切掉双手。
约公元前1500年中国人为生产精美的衣服而养蚕。农民将装有蚂蚁的包放在柑橘树上,以保护果实不被昆虫侵害,这是有关使用生物防治的最早记录。
约公元前802年欧洲首次从亚洲引入和种植玫瑰树。
公元前570年古希腊哲学家阿纳克西曼德(Anaximander)提出,动物最早生产于水中,然后变成陆地动物。
公元前500年爱菲斯(Ephesos,在今土耳其)的赫拉克利特(Heraclitus)提出:对于生命来说,相反力之间的张力是必不可少的。而且,他相信火是基本的元素。
约公元前460年此后的90多年,希腊医生希波克拉底(Hippocrates)在希腊的柯斯(Cos)岛 上生活和教学。
20世纪特别是40年代以来,生物学吸收了数学、物理学和化学等的成就,逐渐发展成一门精确的、定量的、深入到分子层次的科学,人们已经认识到生命是物质的一种运动形态。生命的基本单位是细胞(由蛋白质、核酸、脂质等生物大分子组成的物质系统)。生命现象就是这一复杂系统中物质、能量和信息三个量综合运动与传递的表现。生命有许多为无生命物质所不具备的特性。例如,生命能够在常温、常压下合成多种有机化合物,包括复杂的生物大分子;能够以远远超出机器的生产效率来利用环境中的物质和能制造体内的各种物质,而很少排放污染环境的有害物质;能以极高的效率储存信息和传递信息;具有自我调节功能和自我复制能力;以不可逆的方式进行着个体发育和物种的演化等等,揭露生命过程中的机制具有巨大的理论和实践意义。
现代生物学是一个有众多分支的庞大的知识体系,本文着重说明生物学研究的对象、分科、方法和意义。关于生命的本质和生物学发展的历史,将分别在“生命”、“生物学史”等条目中阐述。
研究对象
地球上现存的生物估计有200万~450万种;已经灭绝的种类更多,估计至少也有1500万种。从北极到南极,从高山到深海,从冰雪覆盖的冻原到高温的矿泉,都有生物存在。它们具有多种多样的形态结构,它们的生活方式也变化多端。
从生物的基本结构单位──细胞的水平来考察,有的生物尚不具备细胞形态,在已具有细胞形态的生物中,有的由原核细胞构成,有的由真核细胞构成。从组织结构水平来看,有的是单生的或群体的单细胞生物,有的是多细胞生物,而多细胞生物又可根据组织器官的分化和发展而分为多种类型。从营养方式来看,有的是光合自养,有的是吸收异养或腐食性异养,有的是吞食异养。从生物在生态系统中的作用来看,有的是有机食物的生产者,有的是消费者,有的是分解者,等等。
生物学家根据生物的发展历史、形态结构特征、营养方式以及它们在生态系统中的作用等,将生物分为若干界。当前比较通行的是美国R.H.惠特克于1969年提出的 5界系统。他将细菌、蓝菌等原核生物划为原核生物界,将单细胞的真核生物划为原生生物界,将多细胞的真核生物按营养方式划分为营光合自养的植物界、营吸收异养的真菌界和营吞食异养的动物界。中国生物学家陈世骧于1979年提出 6界系统。这个系统由非细胞总界、原核总界和真核总界3个总界组成,代表生物进化的3个阶段。非细胞总界中只有1界,即病毒界。原核总界分为细菌界和蓝菌界。真核总界包括植物界、真菌界和动物界,它们代表真核生物进化的3条主要路线。
6、按脊柱三柱理论,chance骨折为不稳定型骨折,其造成的损伤是?
?
7、不上健身房,有哪来增强核心力量
很高兴参与此话题的探讨,之前我在别处聊过。是个很好的主题,现在流行讲核心力量。但所谓“核心力量”到底指什么,很多人也是迷迷糊糊。所以在练之前,我们先弄明白以供参考。一家之言,不能概括全部。如果哪里说的不对,还请各位志同道合的人帮我斧正!
核心力量,最早叫核心稳定性,再往前,是从探讨脊柱稳定性问题中引申出来的。这个脊柱稳定性的观点,在上世纪60年代就有。有个“二柱理论”、“三柱理论”,后来,大约是1992年,发展出一个“三亚系模型”理论。这就类似现在俗称的核心力量概念了。
但是,在学术界,“核心力量”的定义一直存在争论,到底是哪些肌肉,学者们往往一人一个观点。有些学者说,核心肌群就是人体膈肌以下,盆底肌以上的区域;有些学者说,是腰部腹部肌群;还有些学者说,核心肌群是指人体肋骨以下至骨盆的位置;还有更多学者认为,核心力量指人体肩关节以下,髋关节以上的区域。
总的来说,国外学者习惯把核心肌群界定为“腰椎-骨盆-髋关节”区域。国内的学者,则偏向于把核心肌群定义为人体重心位置的肌群,比如传统武术里讲的“丹田”附近。
如果按照主流观点来说,那核心力量就是腰椎、骨盆、髋关节形成的整体。具体说,这部分涉及到29-33块肌肉,很复杂。
实际上,核心力量不光是肌肉力量这么简单,还涉及到几个大系统的配合。我举个例子,便于大家理解。一个生鸡蛋和一个熟鸡蛋,放在桌子上一转,生鸡蛋转不了多少圈就停了,熟鸡蛋可以转更多圈,比较稳定。原因就是因为,生鸡蛋内部松散,旋转时流失了不少能量。
同样,一根棍子,两头硬中间软,挥下去肯定难以发挥力量。人的核心区域也是软连接,稳定性好,力量才能得以传导。
但核心区域光硬还不行,该柔软的时候也要柔软,好像鞭子一样,软有软的好处,能发挥抽击的力量。那种感觉有点类似于武术里说的“寸劲”、“柔劲”。
所以,核心力量,不但要突力量,还要突出“协调”两个字,真的讲起来非常复杂。现在社会上流行的核心力量与身体姿态的关系,其实远不能反映出核心力量在体育训练当中的全貌。如果比较全面的理解核心力量,就是下面这两个图表。