导航:首页 > 肌腱 > 肌腱细胞在运动中收缩伸长吗

肌腱细胞在运动中收缩伸长吗

发布时间:2020-12-02 11:24:11

1、细胞生物学肌肉收缩的运动主要是通过什么引起的

神经-肌肉收缩的过程,则可以这样描述:
1、信号传入:刺激信号以生物电形式通过传回入神经到达中枢;答
2、信号传出:中枢整合刺激信号,并将此信号以生物电形式通过传出神经传到外周。
3、兴奋-收缩偶联:从中枢传出的神经信号并不能直接引起肌肉收缩,而需要在神经与肌肉连接处一个叫“运动终板”的结构里发生一次“电化学转换”,即把神经信号转化为化学信号——“乙酰胆碱”。乙酰胆碱可刺激骨骼肌细胞生成新的生物电信号。
4、肌丝滑行:骨骼肌细胞是由一段一段的“肌节”构成,在每个肌节内都存在粗、细两种“肌丝”,乙酰胆碱生成的细胞电信号可以让细肌丝向粗肌丝方向滑动,肌节缩短,肌细胞就发生收缩。
5、肌肉收缩:上述肌丝滑行是单个肌细胞的动作,在一块肌肉内,所有肌细胞通常都是同时发生肌丝滑行动作的,于是就产生了整块肌肉的收缩运动,表现出来就是伸手、持物、跳跃等各种肢体运动。

2、肌腱的细胞生物学

肌腱细胞是肌腱的基本功能单位,它合成和分泌胶原等细胞外基质,维持肌腱组织的新陈代谢。肌腱细胞是一种分化程度很高的细胞,在体外培养条件下,增殖相对缓慢,尤其是经过多次传代后,肌腱细胞甚至丧失进入增殖期的能力。
1.肌腱细胞的发生来源:肌腱细胞起源于胚胎时期的间充质细胞。间充质是胚胎期填充在外胚层和内胚层之间的散在的中胚层组织。间充质细胞呈星形,有许多胞质突起。电镜下核较大,卵圆形,核仁明显,相邻的细胞突起彼此连接成网。间充质细胞分化程度低,有很强的分裂分化能力。
2.生物力学对肌腱细胞的影响:肌腱是连接骨骼肌肌腹与骨骼之间的单轴致密胶原纤维结缔组织束,是弹性小、寡血管的组织,用于传导肌腹收缩所产生的力,牵引骨骼使之产生运动。肌腱本身不具有收缩能力,但具有很强的耐压抗张力和抗摩擦的能力。因此,力学刺激必然对肌腱细胞的生物学特性产生很大的影响。力学信号可刺激细胞表面的牵张受体和粘附位点,导致一系列瀑布效应,从而改变细胞周围的营养成分、氧气等。还可改变细胞内的第二信使NO或Ca2+浓度,直接或间接影响细胞因子mRNA的表达,从而影响基质蛋白的合成。

3、从肌细胞兴奋到肌肉收缩的全过程

肌细胞从兴奋到收缩的全过程包括三个基本过程:

1、肌细胞兴奋触发肌肉收缩,即兴奋-收缩偶联

当肌细胞兴奋时,动作电位沿横管系统进入三联管,横管膜去极化使终池大量释放Ca2+。

2、横桥运动引起肌丝滑行

当肌质的浓度升高时,肌钙蛋白结合足够的,使原肌球蛋白的双螺旋体从肌动蛋白结构的沟沿滑到沟底,肌动蛋白上能与横桥结合的位点暴露出来。

横桥与肌动蛋白结合形成肌动球蛋白,激活横桥上的ATP酶的活性,在Mg2+参与下,结合在横桥上的ATP分解放出能量,横桥牵引细丝向粗肌丝中央滑行。

3、收缩肌肉的舒张

当刺激终止后,终池不断地将肌质中的收回,肌质浓度下降,与肌钙蛋白结合消除,肌钙蛋白、原肌球蛋白恢复到原来构型。

肌动蛋白上与横桥结合的位点重新掩盖起来,肌丝由于自身的弹性回到原来位置,收缩肌肉产生舒张。

(3)肌腱细胞在运动中收缩伸长吗扩展资料:

肌细胞的特点

肌细胞的结构特点是细胞内含有大量的肌丝,具有收缩运动的特性,是躯体和四肢运动和体内消化、呼吸、循环、排泄等生理活动的动力来源。肌细胞内的基质称“肌浆”,肌细胞的内质网称肌浆网,肌细胞的细胞膜称“肌膜”。

肌纤维之间有少量结缔组织、血管、淋巴管及神经在构成肌肉组织时,各肌肉细胞一般外形为纺锤状乃至纤维状,特称为肌(肉)纤维。

海绵动物虽然缺乏肌肉组织,但硅角海绵类除体表的扁平上皮细胞多少有点收缩性外,在体表流出孔的周围,存在着称为肌细胞(myocyte)的长纺锤形的收缩性细胞。

此外,钙质海绵类的小孔细胞也有收缩性。这些和某种原生动物细胞的整体都能收缩共同构成了肌细胞的萌芽形态。发展到腔肠动物,水螅型的外胚叶细胞层中具有上皮肌细胞,可认为是真肌原纤维。

这里最普通的圆柱形上皮细胞,即支柱细胞,基底部延长而成纺锤形,只有这部分存在肌原纤维,它是由体表的上皮细胞向肌细胞分化过程中的形态。至于水母型则已完全成为纺锤形的肌细胞。扁形动物以上的动物已明显分化为皮肌层、器官肌等等。

4、人为什么可以运动 是肌肉在运动吗?? 就是人为什么 可以走 可以跳 是肌肉的收缩吗 还是什么

人体的运动是由骨骼、关节、肌肉三者共同实现的。骨骼起杠杆的作用,关节是运动的枢纽,肌肉收缩则是运动的动力。

人体有206块骨,分成颅骨、躯干骨和四肢骨三部分,组成了一个坚硬而又刚韧的骨架,支撑住身体各部的软组织,使人体具有一定的形状,而且它保护脑、脊髓、心、肺、膀胱等器官,不致遭受外力的损害。骨还是骨骼肌(简称肌肉)的附着处,骨骼肌收缩时就可以牵动骨骼,完成身体的各种运动。

骨与骨之间的连接方式中有一种是可动的,这样连接的地方叫做关节。关节为身体运动提供了可能性。可以设想,假如骨与骨只有固定的连接,全身的骨骼便成为一整块骨头,只有支持和保护作用,而不能实现运动这个重要的机能

骨与关节本身都没有运动能力,必须借助附着在关节两端骨骼上的肌肉发生收缩,才能牵动骨骼产生围绕关节的各种运动。

我们通常说的肌肉指的是骨骼肌。除了骨骼肌之外,人体还有构成内脏和血管壁的平滑肌和构成心脏壁的心肌。骨骼肌的特点是受意志的支配,要动就动.要停就停.而且比另两种肌肉的收缩速度快得多。

组成肌肉的基本单位是肌纤维(相当于细胞),它是一根根长圆柱形细胞。许多肌纤维排列成束,外面包上一层结缔组织的膜就组成一块肌肉。每块肌肉的中间部分叫肌腹,两端为肌腱。肌腱呈白色,由非常坚韧的结缔组织构成,本身并没有收缩能力。肌腱附着在骨骼的骨膜上。肌肉中还含有非常丰富的血管和神经。

肌肉的形状、大小是多种多样的,这由它们所在的位置和功能而决定。每块肌肉都跨越一定的关节,分别固定在两块或几块骨上。当肌肉收缩时,就能使骨按照关节的活动范围而运动。

5、肌细胞从兴奋到肌肉收缩的全过程

生理学角度:
从肌细胞兴奋开始,肌肉收缩的过程应包括三个互相衔接的环节:
1、细胞兴奋触发肌肉收缩,即兴奋
--
缩耦联;
2、横桥运动引起肌丝滑行;
3、和收缩肌肉的舒张。

6、肌肉收缩的主要特征是什么

肌肉收缩的三种形式

肌肉对单个刺激发生的机械反应称为单收缩。根据肌肉收缩时肌长度和肌张力的变化,

可将肌肉收缩分为三种形式。

1、缩短收缩(向心收缩)

特点:张力大于外加阻力,肌长度缩短。

作用:是肌肉运动的主要形式,是实现动力性运动的基础(如挥臂、高抬腿等)。

(1)等张收缩

外加阻力恒定,当张力发展到足以克服外加阻力后,张力不再发生变化。但在不同的关节角度时,肌肉收缩产生的张力则有所不同。在关节运动的整个范围内,肌肉用力最大的一点称为“顶点”。在此关节角度下,骨杠杆效率最差。

如:推举杠铃, 关节角度在120°时肱二头肌收缩张力最大,关节角度在30°时肱二头肌收缩张力最小。

最大等长收缩时,只有在“顶点”即骨杠杆效率最差的关节角度下,肌肉才有可能达到最大收缩。而在其他关节角度下,肌肉收缩均小于自身最大力量。

在整个关节活动的范围内,肌肉做等张收缩时所产生的张力往往不是肌肉的最大张力。

(2)等动收缩

在整个关节活动范围内,肌肉以恒定速度进行的最大用力收缩。但器械阻力不恒定。

等动练习器:

在离心制动器上连一条尼龙绳,由于离心制动作用,扯动绳子越快,器械产生的阻力就越大。

特点:器械产生的阻力与肌肉用力的大小相适应。

等动收缩的优点:

外加阻力能随关节活动的变化而精确地进行调整,使肌肉在整个关节活动范围内都能产生最大的肌张力。

2、拉长收缩(离心收缩)

特点:张力小于外加阻力,肌长度拉长。

作用:缓冲、制动、减速、克服重力。

如:蹲起运动、下坡跑、下楼梯、从高处跳落等动作,相关肌群做离心收缩可避免运动损伤。

3、等长收缩

特点:张力等于外加阻力,肌长度不变。

作用:支持、固定、维持某种身体姿势。其固定功能还可为其他关节的运动创造适宜条件。

如:站立、悬垂、支撑等动作。

4、三种收缩形式的比较

(1)力量:收缩速度相同情况下,离心收缩产生的张力最大。(比向心收缩大50%,比等长收缩大25%)

(2)代谢:输出功率时,离心收缩能量消耗低,耗氧量少。

(3)肌肉酸痛:离心收缩疼痛最显著,等长收缩次之,向心收缩最轻。

肌收缩
肌肉对刺激所产生的收缩反应现象。狭义来说,是指脊椎动物骨骼肌靠传播性活动电位而发生的收缩。单一的活动电位产生单收缩,反复活动电位产生强直收缩。不通过活动电位的肌肉收缩多数情况是由于非传布性的去极化而产生的,去极化如只限于局部肌肉,且为短暂性的,称为局部收缩。去极化如在肌肉全部而且是持续性的,则称为拘性收缩。在平滑肌等所见到的持续性收缩一般称为痉挛,但很多仍然是伴随着反复活动电位或是持续性去极化。可是在双壳贝的闭壳肌等所看到的持续性收缩并没有电位的变化,这种收缩是出于闸式结构。肌肉收缩的记录大致可有两种情况:一种是在重量负荷下记录肌肉缩短时的长度变化――等张收缩。另一种是记录肌肉长度保持一定时的张力变化的等长收缩。

一、骨骼肌细胞的微细结构

粗肌丝 :肌球蛋白

1.肌原纤维: 肌动蛋白

细肌丝 原肌球蛋白

肌钙蛋白

2.肌管系统 横管系统(T管)

纵管系统 (L管)

二、肌肉的特性

1、肌肉的物理特性

① 伸展性:肌肉在外力作用下可被拉长,为肌肉的伸展性。

② 弹性:当外力消失时,肌肉又恢复到原来形状,为肌肉的弹性。

③ 粘滞性:肌肉活动时由于肌肉内部各蛋白分子相互摩擦产生的内部阻力为肌肉的粘滞性。肌肉的物理特性受温度的影响。当肌肉温度升高时,肌肉的粘滞性下降,伸展性和弹性增加。

2、肌肉的生理特性

①兴奋性:肌肉具有对刺激发生反应兴奋的能力。

②收缩性

三、细胞的生物电现象

1. 细胞的兴奋性;兴奋

2. 单一细胞的跨膜静息电位和动作电位

①静息电位:(1)概念:(内负外正)

(2)极化、超极化、去极化(除极化)及复极化的概念

②动作电位:(1)概念:(跨膜出现短暂可逆的电位变化)

(2)产生时的电变化;(3)波形的特点(锋电位、负后电位、正后电位);(4)产生的意义;(5)特点

3.生物电现象的产生机制

① K+平衡电位:产生的条件和产生机制

② 锋电位和Na+平衡电位: 产生的条件和产生机制

③ Na+通道的失活和膜电位的复极

(1)绝对不应期和相对不应期

(2)Na+泵的作用

4. 动作电位的引起和它在同一细胞上的传导

(一)阈电位和锋电位的引起

1.阈电位的概念2.阈电位现象的原因

3.阈强度、阈刺激、阈下刺激

(二)局部兴奋及其特性

(三)兴奋在同一细胞上的传导机制

1.局部电流学说 2.有髓神经纤维的跳跃式传导

四、 肌细胞的收缩功能

1、 神经-骨骼肌接头处的兴奋传递

神经-骨骼肌接头结构;兴奋传递过程;终板电位的特点;兴奋传递的特点

2、 运动单位的组成

3、 运动单位的动员

(4)骨骼肌收缩的分子机制

1. 滑行学说及其主要内容

2. 收缩过程的分子机制

①粗肌丝的结构及横桥的特性

②肌丝滑行的机制

③细肌丝的结构

五、肌肉的收缩形式与力学特征

1.缩短收缩、拉长收缩和等长收缩

缩短收缩:缩短收缩是指肌肉收缩所产生的张力大于外加的阻力时,肌肉缩短,并牵引骨杠杆做相向运动的一种收缩形式。依据整个关节运动范围肌肉张力与负荷的关系,缩短收缩又可分非等动收缩和等动收缩两种。

拉长收缩:当肌肉收缩所产生的张力小于外力时,肌肉积极收缩但被拉长,这种收缩形式称拉长收缩,又称离心收缩。

等长收缩:当肌肉收缩产生的张力等于外力时,肌肉积极收缩但长度不变,这种收缩形式称等长收缩。

2.肌肉收缩的力学特征

(一)后负荷对肌肉收缩的影响——张力与速度关系

后负荷:后负荷是肌肉收缩开始之后所遇到的负荷。

力-速度曲线:固定前负荷不变,让肌肉在不同的后负荷条件下进行等张收缩。把肌肉所产生的张力和缩短初速度绘成坐标曲线。

(二)前负荷对肌肉收缩的影响—张力与长度关系:见课本图2-15

前负荷:是肌肉收缩开始前加上的负荷。

六、肌纤维类型与运动能力

1.人类肌纤维类型的类型

依据收缩机能将骨骼肌纤维分为“慢肌”和“快肌”两种类型的观点。这一分类方法通常只适用于区别动物骨骼肌纤维类型,而不完全适合于区别人类的骨骼肌纤维类型。

(1)根据组织化学染色法

依据具有不同酶活性的肌原纤维ATP酶在各种不同pH环境中预孵育时染色程度的差异,可将骨骼肌纤维划分为Ⅰ型Ⅱ型,以及Ⅰc、 Ⅱa、Ⅱb、Ⅱc、Ⅱac和Ⅱab六种亚型。其中,Ⅱc型纤维被认为是一种未分化的较原始的肌纤维。

(2)根据肌纤维代谢特征

把骨骼肌纤维分为慢缩强氧化型、快缩强氧化酵解型和快缩强酵解型三种类型

2.两类肌纤维的形态、代谢和生理特征

形态特征

形态特征包括以下三个方面: ①结构特征; ②神经支配;③肌纤维面积。

代谢特征:① 代谢底物;② 代谢酶活性

3、生理特征

①收缩速度:肌肉中快肌纤维百分比较高者,其收缩速度也较快。

②收缩力量:肌肉收缩力大小取决于肌肉的横断面积并受肌纤维类型等因素影响,多数研究认为动物快肌收缩力量明显大于慢肌。

③ 抗疲劳性:动物和人体实验均证明,慢肌纤维的抗疲劳能力较快肌强,故快肌纤维较慢肌纤维更易疲劳。

3.不同类型肌纤维的分布

(1)肌纤维类型的百分组成。

(2)骨骼肌纤维功能上的分布现象

(3)骨骼肌纤维类型的性别差异。

(4)骨骼肌纤维类型组成的年龄变化。

(5)遗传因素对骨骼肌纤维类型分布的影响。

4.肌肉中感受器的结构和功能

(1)肌梭的结构与功能;脊髓前角的描述;感受装置结构和功能的描述;γ运动纤维的作用;反馈信息的传递

(2)腱梭的结构与功能;感受装置结构;反馈信息的传递

七、肌肉的结缔组织

1、肌肉结缔组织的组成:胶原是结缔组织最主要成分,以胶原纤维形式存在。

2.运动对肌肉结缔组织的影响

3.解释:快速下蹲比缓慢下蹲起跳和“挺胸带臂”比“停胸带臂”用力效果好的原因。

4. 运动对肌肉结缔组织的影响

①长期运动可提高肌腱的抗张力量和抗断裂力量。

②长期运动可使肌中结缔组织肥大。

八、肌电图的应用

1、肌电的引导

表面电极所引导的是整块肌肉的综合电活动,它具有操作简便,无损伤和无痛苦等优点,被广泛应用于体育科学研究,缺点是不能记录深层肌肉电活动。

2、正常肌电图

正常肌肉在完全松弛情况下不出现电活动,引导电极插入肌肉后,在记录仪上仅描记出一条平稳的基线。运动单位电位的波幅代表放电的强度,其大小取决于兴奋的运动单位大小或活动肌纤维数目。

3、肌电图的应用

①利用肌电图分析技术动作,了解完成该项动作的主要肌群,及其用力程度和顺序,为体育教学与训练提供依据。

②利用肌电图解决体育基础学科(如运动生理学、运动解剖学、运动生物力学和运动医学)中某些理论与实践问题。

③利用肌电图了解训练对神经肌肉的影响,为评定运动员训练水平提供依据

7、肌肉收缩机制

肌肉收缩机制是肌细胞产生动作电位,引起肌浆中Ca+浓度升高,Ca+与肌钙蛋白C结合,肌钙内蛋白发生容构象变化,使肌钙蛋白Ⅰ与肌动蛋白的结合减弱,原肌球蛋白发生构象改变,使肌动蛋白上的结合位点暴露,横桥与肌动蛋白结合,横桥发生扭动,将细肌丝往粗肌丝中央方向拖动。

经过横桥与肌动蛋白的结合、扭动、解离和再结合、再扭动所构成的横桥循环过程,细肌丝不断滑行,肌小节缩短。肌肉收缩过程中能量来源于ATP水解释放的能量。

(7)肌腱细胞在运动中收缩伸长吗扩展资料:

肌肉是由圆柱状的肌纤维组成的,而肌纤维中包含有许多纵向排列的肌原纤维,它是肌肉收缩的装置。肌原纤维由肌小节组成。

在每个肌小节中,由肌球蛋白组成的粗丝和由肌动蛋白组成的细丝—F-肌动蛋白相互穿插排列,并且依靠粗丝头端的横桥使二者紧密接触在一起。肌肉的收缩是粗丝和细丝发生相对运动的结果,这个过程受Ca的调节,并需要水解ATP来提供能量。

参考资料来源:网络——肌肉收缩

8、为什么等长收缩时肌细胞的长度不改变?

主要就是在长度不变情况下 由于传出神经肌的刺激增加 肌浆网放的钙回离子增加 肌钙蛋白答更多的结合钙离子 更多原肌凝便构暴露肌动蛋白与肌球蛋白的结合位点 于是拉力增加
其实大多情况下的收缩很少有完全的等张或等长

与肌腱细胞在运动中收缩伸长吗相关的内容