导航:首页 > 骨髓 > 骨髓芯片

骨髓芯片

发布时间:2021-02-11 10:59:33

1、PHEIC有哪些?

2009年以来至2020年1月,WHO共宣布了六起“国际关注的突发公共卫生事件”:

1、2009年——H1N1猪流感

2009 年甲型 H1N1 流感。4 月起,甲型 H1N1 流感开始在墨西哥爆发。随后,该疫情迅速蔓延至中国乃至全球,成为了 PHEIC 的第一次实践。2010年8月,世卫组织宣布甲型H1N1流感大流行期已经结束。

2、2014年5月——骨髓灰质炎

阿富汗和巴基斯坦是仅有的两个报告了脊灰炎病例的国家,而尼日利亚作为有脊髓灰质炎流行的第三个国家,自 2014 年7月24日以来,未发生过I型野生脊灰病毒导致的病例。

3、2014年8月—西非的埃博拉疫情

2014年8月8日,世界卫生组织总干事陈冯富珍在瑞士日内瓦宣布,在西非暴发的埃博拉疫情已构成国际公共卫生紧急事件。世卫组织还建议,所有报告有埃博拉疫情的国家都应宣布进入国家紧急状态。

4、2016年—寨卡病毒

2014年2月,智利在复活节岛发现了寨卡病毒感染的首位本土病例,最终导致了 4000 例感染孕妇分娩了小头畸形儿。

5、2019年—刚果民主共和国埃博拉疫情

2019年7月17日,世卫组织将刚果(金)埃博拉疫情定为PHEIC,当时总病例2532例,死亡1705例,每周新发80例。3个月后再次评估决定延续。截至2020年1月20日,总病例已达3416例,死亡2237例。

6、2020年1月—中国境内新型冠状病毒疫情

当地时间2020年1月30日,世卫组织发布新型冠状病毒感染肺炎疫情为国际关注的突发公共卫生事件。

(1)骨髓芯片扩展资料

1、国际公共卫生紧急事件简介

根据2005年通过的《国际卫生条例》,“国际关注的突发公共卫生事件”是指“通过疾病的国际传播构成对其它国家的公共卫生风险并可能需要采取协调一致的国际应对措施的不同寻常的事件。”

该定义暗示出现了如下一种局面:当前事件情况严重、突然、不寻常、意外;对公共卫生的影响很可能超出受影响国国界;并且可能需要立即采取国际行动。

2、影响事件是否构成PHEIC的因素

疾病感染病例、死亡病例、传染性、治疗效果、疫区人口密集程度;病情发展速度;是否传出国境;是否需要限制国际旅行及贸易等。

2、多发性骨髓瘤要一直进行化疗治疗吗?万珂治疗方案有没有上限?

在缓解之后可以服用中药调理

3、C-12 多肿瘤标志物蛋白芯片检验项目分别代表哪些部位?

肿瘤标志物是指癌细胞分泌或脱落到体液或组织中的物质,或是患者对自身体内癌变细胞发生反应而产生并进入到体液或组织中的物质。这些物质,有的是不存在于正常人体内,只见于胚胎时期;有的是存在于正常人体内但含量微弱,患癌症时才超过正常值。通过对肿瘤标志物检测,可以早期预警或辅助诊断、分析病程、指导 治疗、监测复发或转移、判断预后等。
1、甲胎蛋白(AFP):在胎儿时期存在,出生后下降,正常人<5微克/升,肝细胞发生癌变后明显升高,是诊断肝癌的常用指标。一般来说,AFP>500微克/升L时,其诊断肝癌的阳性率可以达到70%~90%,特异性较好。
2、癌胚抗原(CEA):存在于胚胎胃肠黏膜上皮细胞和一些恶性组织的细胞表面,正常人血清值<30微克/升(不同实验室正常值有差别),CEA升高主要见于结肠癌,但也见于胰腺癌、乳腺癌、肺癌、甲状腺癌以及某些非癌患者,因此,CEA作为诊断意义并不大,但作为已经明确诊断癌症并进行手术等治疗后,定期进行检测(2~4周1次),可以帮助分析疗效、判断预后、预测复发已经是否转移有价值。
3、CA19-9:是一种神经节苷酯,没有器官特异性,在多种腺癌中升高,如胰腺癌、肺癌、结肠癌、胃癌,其中以胰腺、胃、胆管癌的敏感性较高,是胰腺癌的较可靠标志。CA19-9测定有助于判断预后,其复发和转移的预测往往先于放射线检查发现。CA19-9与CEA联合检测鉴别胆结石和胆囊癌,还可以提高对胃癌筛选普查的敏感性和特异性。
4、CA12-5:正常胎儿和成人卵巢细胞不表达CA12-5抗原,卵巢癌上皮细胞敏感性高,但特异性不高,因为它也存在于乳腺、肺、良性和恶性渗出液中。CA12-5与肿瘤复发有关,因此,有助于随访病情,而且它是第二次治疗的重要参考指标。
5、CA24-2:在正常的胰腺、结肠黏膜中存在,但很微弱。在胰腺癌和结肠癌中升高,对胰腺癌的诊断的阳性率高达74%~79%。
6、CA15-3 是监测乳腺癌的重要抗原,存在于多种腺癌细胞中,如乳腺癌、肺腺癌、卵巢癌、胰腺癌等。对乳腺癌的相关性较高,对乳腺癌的敏感性和特异性都高于CEA,因此,主要用于判断乳腺癌的进展和转移、监测治疗和复发。
7、鳞状上皮细胞癌抗原(SCC):特异性高,但敏感性低,用于监测宫颈癌、肺癌、头颈部上皮癌。
8、前列腺特异性抗原(PSA):只存在于前列腺腺泡及导管上皮细胞胞浆中,是前列腺癌较特异的标志。阳性率高于63%,用于诊断前列腺癌、鉴别转移性腺癌的来源,判断疗效和预后。
9、人绒毛膜促性腺激素(HCG):是存在于胎盘中的一种糖蛋白,正常人血中微量,怀孕时尿中和血中水平升高,用于监测非精原细胞瘤的治疗反应及复发情况,尤其是绒毛膜上皮癌的诊断、疗效观察、预测预后有重要价值。
10、神经元烯醇化酶(NSE):存在于神经元及神经来源的细胞中,是神经细胞癌和小细胞肺癌的标志物,尤其对于小细胞肺癌,其特异性和敏感性均高,可用于诊断、鉴别诊断、疗效和病情评估。
11、β2-微球蛋白(β2-MG):用于诊断淋巴增殖性疾病如白血病、淋巴瘤、多发性骨髓瘤,其水平高低与瘤细胞数量、生长速率、预后、疾病活动性有关。
12、铁蛋白(SF):在多种癌症患者血中均有不同程度的升高,在肝癌患者中阳性率高答70%以上,可以辅助肝癌的诊断。
13、CA50:是一种非特异性的广谱肿瘤标志物,是一种唾液酸酯和唾液酸糖蛋白,正常组织中一般不存在。当细胞恶变时,糖基化酶被激活,造成细胞表面糖基结构改变而成为CA50标志物。

4、骨髓移植的并发症

1.早期并发症
①预处理相关的急性毒副作用如口腔溃疡、急性胃肠道反应等;②出血回性答膀胱炎;③肝静脉闭塞病;④毛细血管渗漏综合征;⑤植入综合征;⑥弥漫性肺泡出血综合征;⑦血栓性微血管病;⑧特发性肺炎综合征;⑨感染;⑩移植物抗宿主病
2.晚期并发症
①皮肤黏膜的色素脱失及沉着;②腺体分泌功能减退;③白内障;④白质脑病;⑤生长发育障碍及内分泌障碍;⑥继发恶性肿瘤。

5、电脑芯片是什么东西?

形象的说法就是人的骨髓,电脑是由很多硬件组成的而每个硬件上又有很多不同的芯片,

6、毛细管电泳法的高速毛细管电泳(CE)分离系统

毛细管区带电泳是芯片毛细管电泳分离蛋白质的一种最基本的分离模式。它基于不同的蛋白质分子在电场中的迁移速率不同而实现分离,是一种简单、快速的分离方法。采用区带电泳分离模式已成功地分离了多种蛋白质样品。
Colyer等采用毛细管电泳芯片,以区带电泳模式对人血清蛋白样品进行了分离,可分辨出4个蛋白质区带(即IgG、转铁蛋白、a-1-抗胰蛋白酶和白蛋白区带,分别用以模拟血清蛋白样品中的7、p、dl和白蛋白区带)。其中蛋白质的荧光标记在分离之后进行,由于荧光染料TNS(2-toluidinonaphtha.1-ene-5-sulfonate)标记血清蛋白的灵敏度较低,所以没能实现实际人血清蛋白样品的5个区带分离。Xiao等采用区带电泳模式,以50 mmoVL磷酸盐缓冲液(pH 2.15)作为工作缓冲液,在通道宽度为30um的聚二甲基硅氧烷(PDMS)芯片中,于35s内实现了细胞色素C和溶菌酶的快速分离。Dodge等设计了集成8个微阀和1个微泵的PDMS芯片,通过微阀微泵实现了对液流的有效控制。他们首先采用区带电泳的分离模式分离牛血清白蛋白和肌红蛋白,然后通过阀的作用将分离后的蛋白质组分分别引入微混合器中酶解,最后对产物进行质谱分析。该工作显示芯片技术可用于质谱分析前复杂蛋白样品的预处理。庄等在石英芯片上以75 mmol/L硼酸盐缓冲液(pH 10.3)作为芯片电泳缓冲体系,分离了免疫球蛋白、O/一1一抗胰蛋白酶、牛血清白蛋白和铁传递蛋白,并对经临床确诊的妊娠高血压症、风湿性心脏病、多发性骨髓瘤患者的尿液样品进行电泳分析,在2 min内得到了与美国Helena电泳系统一致的分析结果。
在芯片毛细管电泳分离蛋白质的研究中所要解决的一个重要问题就是通道表面对大分子蛋白质的吸附问题。蛋白质与芯片通道内壁之问的微小吸附效应就会降低蛋白质的分离效率,引起峰形变宽拖尾,影响分离的重现性。在毛细管区带电泳分离模式下,一般采用通道内壁永久改性和缓冲液中加入添加剂进行动态修饰两种方法来抑制蛋白质的吸附。
Wu等采用多层88%水解聚丙烯醇(PVA)修饰PDMS芯片,以区带电泳模式有效分离了两种碱性蛋白质(溶菌酶和核糖核酸酶)以及两种典型的酸性蛋白质(牛血清白蛋白和口.乳球蛋白)。该涂层在pH 3~11范围内均可抑制电渗流的产生和蛋白的吸附作用,并且效果稳定,连续运行70次后分离效果仍然很好。该研究组随后又采用自组装方法在PDMS芯片通道表面加工环氧修饰的聚合物涂层抑制蛋白质的吸附,成功地分离了溶菌酶和核糖核酸酶A。Chiem等在运行缓冲液中加入了无机电解质NaCl和中性表面活性剂吐温20来抑制蛋白质的吸附,利用芯片毛细管区带电泳进行了单克隆抗体的分离分析。 ‘ 在蛋白质组学和蛋白质分离研究中,凝胶电泳是广泛使用的分离技术。它是以凝胶等聚合物作为分离介质,利用其网络结构并依据被测组分的分子体积不同而进行分离的一种分离模式。在芯片上采用凝胶电泳模式分离蛋白质,更有利于实现分离操作的高速度和高效率。Yao等采用十二烷基磺酸钠(SDS)凝胶电泳分离模式,对比了芯片SDS毛细管凝胶电泳与常规毛细管凝胶电泳系统分离蛋白质的性能,结果表明前者的分离效率明显优于后者,分离时间也明显低于后者。
与常规毛细管凝胶电泳相同,芯片毛细管凝胶电泳常用的筛分介质也分为凝胶和非胶聚合物溶液两种。交联聚丙烯酰胺凝胶是广泛使用的一种凝胶筛分介质,Herr等首次将传统的SDS-聚丙烯酰胺凝胶电泳(SDS·PAGE)分离蛋白质的方法移植到芯片上,采用光聚合的方法在芯片通道内制备浓度为6%的交联聚丙烯酰胺凝胶作为筛分介质,在30S的时间内对相对分子质量(M,)在5 500~39 000之问的5种蛋白质进行分离,分离距离仅为4 mm,分离效率达到理论塔板数4.41×105。该研究组’1引后期又在微通道内制备了浓度为22%的交联聚丙烯酰胺膜用于蛋白质样品的预富集,有效富集了相对分子质量为12 000~205 000的蛋白质分子,并采用浓度为8%的交联聚丙烯酰胺凝胶作为筛分介质进行分离。
Agirregabiria等在聚甲基丙烯酸甲酯(PM—MA)芯片上使用SU一8光胶制作微通道,采用浓度为12%的聚丙烯酰胺凝胶作为筛分介质分离蛋白质。随后该研究组又在该芯片上集成金属电极,采用相同的分离模式成功地分离了相对分子质量分别为20 000和97 000的胰蛋白酶抑制剂和磷酸化酶两种蛋白质。然而,交联聚阿烯酰胺凝胶存在制备复杂、不易使用等问题。与其相比,线性聚丙烯酰胺(PLA)、聚乙烯醇(PEG)、聚氧化乙烯(PEO)等非胶筛分介质具有制备简单、使用方便、可以先聚合后注入通道而无需在通道内进行聚合反应等优点,适合在复杂的通道体系中使用,因此在芯片毛细管凝胶电泳中非胶筛分介质得到了广泛的应用。Yao等采用SDS 14·200凝胶缓冲液(Beckman Coulter公司产品)在玻璃芯片上于35 s内分离了相对分子质量在9 000~l 16 000之间的6种蛋白质。Giordano等将NanoOrange染料加入样品和缓冲液中进行蛋白质的动态标记,并对分离缓冲液体系进行了优化,最终选择5%的PEO(M,=100 000)作为筛分介质。该系统对牛血清白蛋白的检出限为500ng/mL,并完成了对实际人血清样品的分离分析。
在芯片毛细管凝胶电泳中,通道内壁对蛋白质的吸附仍是需要解决的重要问题。Bousse等使用聚二甲基丙烯酰胺(PDMA)物理涂覆玻璃芯片微通道内壁,将电渗流降低到0.5×10~m zV s .以SDS凝胶电泳的分离模式在40 s内分离了Bio—Rad公司的蛋白质标准样品’,分离效率达到107塔板/m。Nagata等在PMMA芯片中使用了PEG涂层,以5%线性聚丙烯酰胺为筛分介质,在分离长度为3 mm的通道内实现了胰蛋白酶抑制剂、牛血清白蛋白和卢半乳糖苷酶3种蛋白质的高速分离,分离时间仅为8 S 。 芯片等电聚焦分离蛋白质的原理与常规毛细管等电聚焦基本相同,都是依据蛋白质的等电点(pI)不同而进行分离。Hofmann等首次将毛细管等应用于蛋白质分析。
Li等在PDMS芯片和聚碳酸酯(PC)芯片上,采用等电聚焦模式分离厂牛血清白蛋白和增强型绿色荧光蛋白(EGFP)。Das等。26 3采用高聚物芯片,在等电聚焦电泳模式下优化了,分离长度及电压条件,最终在长1.9 cm的通道内于1.5 min内分离了绿荧光蛋白和R藻红蛋白,分离电压为500 V。Cui等在PDMS芯片上采用等电聚焦分离模式成功分离了组绿荧光蛋白、异藻青蛋白和藻红蛋白。该作者还报道,通过改变样品和分离介质中添加剂甲基纤维素的浓度,可以改变完成蛋白质分离所需要的通道距离,Tsai等通过采用六甲基二硅氧烷等离子聚合膜修饰玻璃芯片通道的方法抑制蛋白质吸附,在等电聚焦的分离模式下分离了藻青蛋白(pI:4·65)、血红蛋白(pI: 7.0)和细胞色素C(pI:9·6)3种蛋白质混合物,分离在3 min内完成,分离效率为19 600塔板/m。Huang等在进行芯片等电聚焦分离蛋白质时,采用在两性电解质溶液中加入羟甲基纤维素作为添加剂的方法来抑制蛋白质的吸附。 芯片毛细管电泳应用的成功促进了高速高效的芯片二维电泳技术的发展。对于多组分的复杂蛋白质样品,采用传统的一维分离方法通常无法满足要求,需要采用二维分离技术来提高分离效率,增加峰容量。与传统的毛细管电泳系统相比,在芯片上进行二维电泳分离,可以通过设计芯片通道结构实现通道的直接交叉或连通,而无需制作复杂的二维毛细管电泳接口,从而避免了因在接口处存在死体积而导致的谱带扩展现象。
在芯片二维电泳分离蛋白质的研究中,第一维分离模式多采用等电聚焦模式。Chen等制作了二维毛细管电泳PDMS芯片,利用第一维的等电聚焦和第二维的凝胶电泳对荧光标记的牛血清白蛋白和碳酸酐酶以及德科萨斯红标记的卵清蛋白进行分离分析。Li等设计了等电聚焦和凝胶电泳联用的二维分离高聚物心4t-片。蛋白质样品在完成第一维的等电聚焦分离后,可在多个并行的通道内完成第二维的凝胶电泳分离。整个分离过程在10 min内完成,峰容量达到1 700。Herr等:”1研制r采用十字通道构型的等电聚焦一自由区带电泳二维芯片系统,芯片通道宽200斗m,深20斗m,待测样品在横向通道中进行等电聚焦分离,分离后的样品区带在电场驱动下进入纵向区带电泳通道中进行第二维分离。系统采用荧光显微镜成像的方法对分离性能进行了评价,5 min内分离的峰容量达到1 300。Wang等通过在PDMS芯片中制作微阀来防止一维等电聚焦和二维凝胶电泳系统之间的分离缓冲液相混合,在20 rain内有效分离了4种标准蛋白质。也有报道在PMMA芯片上进行SDS凝胶电泳和胶束电动毛细管电泳相结合的蛋白质二维电泳分离。该系统在12 min内完成10种蛋白质的分离,峰容量约为l 000。
此外,还有一类基于芯片的二维分离系统主要应用于蛋白质酶解物的分离分析。通常第一维分离采用胶束电动毛细管电泳或毛细管电色谱模式,第二维分离采用区带电泳模式2000年,Ramsey课题组。“1首次在玻璃芯片上建立了胶束电动毛细管电泳(第一维)与区带电泳(第二维)结合的二维分离系统,并应用于细胞色素C、核糖核酸酶、d哥L白蛋白等的胰蛋白酶降解产物分离。其后,该课题组对系统进行了改进,加长了第一维电泳通道的长度,并采用细径转角通道来降低扩散,在约15 min内分离了牛血清白蛋白酶解物,峰容量达到4 200。2001年,他们还研制了开管电色谱和区带电泳相结合的芯片二维电泳系统,其电色谱分离部分采用长25 cm的具有十八烷基三甲氧基硅烷涂层的环状通道,区带电泳部分则采用长1.2 am的直形通道,在13 min内实现了届一酪蛋白胰蛋白酶解产物的分离。
相对于一维分离芯片,二维芯片分离系统具有很高的分离效率和峰容量,预计会在复杂蛋白质样品的分离上发挥更大的作用。 微流控芯片毛细管电泳系统应用于蛋白质的分离分析具有突出的优越性,特别是在临床检验及现场监测等方面的应用具有良好的发展前景,同时,其对分析仪器的集成化、微型化与便携化的发展也具有重要意义。据文献报道,Renzi等已经研制出手持式的微流控芯片电泳分离蛋白质装置。该装置由电泳芯片、小型激光诱导荧光检测系统以及高压电源等组成,其体积仅为11.5 cm×11.5 cm×19.0 cm,可用于现场分析、床旁医学诊断以及取证分析。近年来,国内已有关于利用芯片毛细管电泳进行临床尿蛋白和脂蛋白检测的报道。最近,Pandey等”川使用Caliper公司和Agilent公司的P200蛋白质芯片来检测微量的白蛋白尿,将蛋白质的电泳分离和荧光检测集成化、自动化,实现了其在临床实验室的应用。
目前,很多科研工作者正致力于微流控芯片毛细管电泳与质谱联用技术的研究,以进一步提高系统对复杂样品的分离分析能力。上述系统在蛋白质分离分析及蛋白质组研究中有广阔的应用前景。尤其是对于复杂蛋白质样品的多维分离分析,芯片毛细管电泳以其快速高效的特点,可以作为其中的一维分离方法,显著提高蛋白质的分析通量。相信随着研究的不断深入及相关技术的不断发展,微流控芯片毛细管电泳蛋白质分离技术将日趋成熟,在生化分析、临床诊断和蛋白质组研究领域发挥重要的作用

7、哪本小说的第7章是什么警系统,里面的猪脚叫东方战,猪脚在第7章中脑袋内有智能芯片的

《都市战神》作者:丛林狼

是战警系统

与骨髓芯片相关的内容