导航:首页 > 骨髓 > 大鼠骨髓巨噬细胞培养

大鼠骨髓巨噬细胞培养

发布时间:2021-02-08 08:36:11

1、如何利用杂交瘤技术制备单克隆抗体

以下是我之前专门写的一个教案,希望对你有帮助。

2013-04-27 11:29

1、动物免疫
(1) 抗原制备
制备单克隆抗体的免疫抗原,从纯度上说虽不要求很高,但高纯度的抗原使得到所需单抗的机会增加,同时可以减轻筛选的工作量。因此,免疫抗原是越纯越好,应根据所研究的抗原和实验室的条件来决定。一般来说,抗原的来源有限,或性质不稳定,提纯时易变性,或其免疫原性很强,或所需单抗是用于抗原不同组分的纯化或分析等,免疫用的抗原只需初步提纯甚至不提纯,但抗原中混杂物很多,特别是如果这些混杂物的免疫原性较强时,则必须对抗原进行纯化。检测用抗原可以是与免疫抗原纯度相同,也可是不同的纯度,这主要决定于所用筛检方法的种类及其特异性和敏感性。

(2) 免疫动物的选择
根据所用的骨髓瘤细胞可选用小鼠和大鼠作为免疫动物。因为,所有的供杂交瘤技术用的小鼠骨髓瘤细胞系均来源于BALB/c小鼠,所有的大鼠骨髓瘤细胞都来源于LOU/c大鼠,所以一般的杂交瘤生产都是用这两种纯系动物作为免疫动物。但是,有时为了特殊目的而需进行种间杂交,则可免疫其他动物。种间杂交瘤一般分泌抗体的能力不稳定,因为染色体容易丢失。就小鼠而言,初次免疫时以8-12周龄为宜,雌性鼠较便于操作。

(3) 免疫程序的确定
免疫是单抗制备过程中的重要环节之一,其目的在于使B淋巴细胞在特异抗原刺激下分化、增殖,以利于细胞融合形成杂交细胞,并增加获得分泌特异性抗体的杂交瘤的机会。因此在设计免疫程序时,应考虑到抗原的性质和纯度、抗原量、免疫途径、免疫次数与间隔时间、佐剂的应用及动物对该抗原的应答能力等。没有一个免疫程序能适用于各种抗原。现用的免疫程序中多数是参照制备常规多克隆抗体的方法。表6-1列举了目前常用的免疫程序。免疫途径常用体内免疫法包括皮下注射、腹腔或静脉注射,也采用足垫、皮内、滴鼻或点眼。最后一次加强免疫多采用腹腔或静脉注射,目前尤其推崇后者,因为可使抗原对脾细胞作用更迅速而充分。在最后一次加强免疫后第3天取脾融合为好,许多实验室的结果表明,初次免疫和再次免疫应答反应中,取脾细胞与骨髓瘤细胞融合,特异性杂交瘤的形成高峰分别为第4天和第22天,在初次免疫应答时获得的杂交瘤主要分泌IgM抗体,再次免疫应答时获得的杂交瘤主要分泌IgG抗体。笔者体会阳性杂交瘤出现的高峰与小鼠血清抗体的滴度并无明显的平行关系,且多在血清抗体高峰之前。因此,为达到最高的杂交瘤形成率需要有尽可能多的浆母细胞,这在最后一次加强免疫后第3天取脾进行融合较适宜。已有人报道采用脾内免疫,可提高小鼠对抗原的免疫反应性,且节省时间,一般免疫3天后即可融合。

2、细胞融合
(1) 主要试剂的配制
a、 细胞培养基 杂交瘤技术中使用的细胞培养基主要有RPMI-1640或DMEM(Dulberco Modified Eagles Medium)两种基础培养基,具体配制方法按厂家规定的程序,配好后过滤除菌(0.22um),分装,4℃保存。

不完全RPMI-1640培养基:RPMI-1640培养基原液96ml
100×L.G.溶液1ml
双抗溶液1ml
7.5% NaHCO3溶液1-2ml
HEPES溶液1ml

不完全DMEM培养基:DMEM 13.37g
超纯水或四蒸水980ml
NaHCO3 3.7g
双抗溶液10ml
100×L.G.溶液10ml
用1N HCl调试PH至7.2-7.4,过滤除菌,分装4℃保存。

完全RPMI-1640或DMEM培养基:不完全RPMI-1640或DMEM培养基80ml
小牛血清15-20ml
用于骨髓瘤细胞SP2/0和建株后的杂交瘤细胞培养。

HT培养基:完全RPMI-1640或DMEM培养基99ml
HT贮存液1ml

HAT培养基:完全RPMI-1640或DMEM培养基98ml
HT贮存液1ml
A贮存液1ml

b、 氨基喋呤(A)贮存液(100×,4×10-5mol/L) : 称取1.76mg氨基喋呤(Aminopterin MW 440.4),溶于90ml超纯水或四蒸水中,滴加1mol/L NaOH 0.5ml中和,再补加超纯水或四蒸水至100ml。过滤除菌,分装小瓶(2ml/瓶),-20℃保存。

c、 次黄嘌呤和胸腺嘧啶核苷(HT)贮存液(100×,H:10-2mol/L,T:1.6×10-3mol/L): 称取136.1mg次黄嘌呤(Hypoxanthine,MW 136.1)和38.8mg胸腺嘧啶核苷(Thymidine,MW 242.2),加超纯水或四蒸水至100ml,置45-50℃水浴中使完全溶解,过滤除菌,分装小瓶(2ml/瓶),-20℃冻存。用前可置37℃加温助溶。

d、 L-谷氨酰胺(L.G.)溶液(100×,0.2mol/L) : 称取2.92g L-谷氨酰胺(L-glutamine,MW 146.15),用100ml不完全培养液或超纯水(或四蒸水)溶解,过滤除菌,分装小瓶(4-5ml/瓶),-20℃冻存。

e、 青、链霉素(双抗)溶液(100×): 取青霉素G(钠盐)100万单位和链霉素(硫酸盐)1g,溶于100ml灭菌超纯水或四蒸水中,分装小瓶(4-5ml/瓶),-20℃冻存。

f、 7.5% NaHCO3溶液 : 称取分析纯NaHCO3 7.5g,溶于100ml超纯水或四蒸水中,过滤除菌,分装小瓶(4-5ml/瓶),盖紧瓶塞,4℃保存。

g、 HEPES溶液(1 mol/L): 称取23.83g HEPES(N-2-Hydroxyethylpiperazine-N,-2-ethanesulfonic acid,N-2-羟乙基哌嗪- N,-2-乙基磺酸,MW 238.3)溶于100 ml超纯水或四蒸水中,过滤除菌,分装小瓶(4-5 ml/瓶),4℃保存。

h、 8-氮鸟嘌呤贮存液(100×): 称取200 mg 8-氮鸟嘌呤(8-azaguanine,MW 152.1),加入4 mol/L NaOH 1 ml,待其溶解后,加入超纯水或四蒸水99 ml,过滤除菌;分装小瓶,-20℃冻存。使用时按1%浓度加入到培养液中(即终浓度为20 ug/ml)。

i、 50% PEG: 称取PEG 1 000 或4 000 20-50 g于三角瓶中,盖紧,60-80℃水浴融化,0.6 ml分装于青霉素小瓶中,盖紧,8磅高压蒸汽15分钟,-20℃存放备用。临用前加热融化,加等量不完全培养基,用少许7.5% NaHCO3调pH至8.0,或购买Sigma或Gibco公司现成产品。

⑵ 髓瘤细胞的准备
融合前骨髓瘤细胞维持的方式,对成功地得到杂交瘤是最为重要的。目标是使细胞处于对数生长的时间尽可能长,融合前肯定不能少于1周。冻存的细胞在复苏后要2周时间才能处于适合于融合的状态,长过了的骨髓瘤细胞至少几天才可能恢复。在实验室中处于对数生长的骨髓瘤细胞维持在含10%小牛血清的培养基中,方法是用6个装5 ml培养基的培养瓶,接种10倍系列稀释的骨髓瘤细胞。1周后到细胞相当密而又未长过的一瓶重新移植。典型的倍增时间为14-16小时。

骨髓瘤细胞悬液的制备方法如下:
a、 于融合前48-36小时,将骨髓细胞扩大培养(一般按一块96孔板的融合试验约需2-3瓶100 ml培养瓶培养的细胞进行准备)。
b、 融合当天,用弯头滴管将细胞从瓶壁瘤轻轻吹下,收集于50 ml离心管或融合管内。
c、 1000 r/min离心5-10分钟,弃去上清。
d、 加入30 ml不完全培养基,同法离心洗涤一次。然后将细胞重悬浮于10 ml不完全培养基,混匀。
e、 取骨髓瘤细胞悬液,加0.4%台盼蓝染液作活细胞计数后备用。细胞计数时,取细胞悬液0.1 ml加入0.9 ml台盼蓝染液中,混匀,用血球计数板计数。计算细胞数目的公式为:每毫升细胞数=4个大方格细胞数×105/4;或每毫升细胞数=5个中方格细胞数×106/2

⑶ 脾淋巴细胞的准备
取已经免疫的BALB/c小鼠,摘除眼球采血,并分离血清作为抗体检测时的阳性对照血清。同时通过颈脱位致死小鼠,浸泡于75%酒精中5分钟,于解剖台板上固定后掀开左侧腹部皮肤,可看到脾脏,换眼科剪镊,在超净台中用无菌手术剪剪开腹膜,取出脾脏置于已盛有10ml不完全培养基的平皿中,轻轻洗涤,并细心剥去周围结缔组织。将脾脏移入另一盛有10ml不完全培养基的平皿中,用弯头镊子或装在1ml注射器上的弯针头轻轻挤压脾脏(也可用注射器内芯挤压脾脏),使脾细胞进入平皿中的不完全培养基。用吸管吹打数次,制成单细胞悬液。为了除去脾细胞悬液中的大团块,可用200目铜网过滤。收获脾细胞悬液,1000r/min离心5-10分钟,用不完全培养基离心洗涤1-2次,然后将细胞重悬于10ml不完全培养基混匀,取上述悬液,加台酚蓝染液作活细胞计数后备用。通常每只小鼠可得1×108-2.5×108个脾细胞,每只大鼠脾脏可得5×108-10×108脾细胞。

⑷ 饲养细胞(Feeder cells)的制备
在细胞融合后选择性培养过程中,由于大量骨髓瘤细胞和脾细胞相继死亡,此时单个或少数分散的杂交瘤细胞多半不易存活,通常必须加入其他活细胞使之繁殖,这种被加入的活细胞称为饲养细胞。饲养细胞促进其他细胞增殖的机制尚不明了,一般认为它们可能释放非种属特异性的生长刺激因子,为杂交瘤细胞提供必要的生长条件;也可能是为了满足新生杂交瘤细胞对细胞密度的依赖性。

常用的饲养细胞有胸腺细胞、正常脾细胞和腹腔巨噬细胞。其中以小鼠腹腔巨噬细胞的来源及制备较为方便,且有吞噬清除死亡细胞及其碎片的作用,因此使用最为普遍。其制备方法如下:

按上述采小鼠脾细胞的方法将小鼠致死、体表消毒和固定后,用消毒剪镊从后腹掀起腹部皮肤,暴露腹膜。用酒精棉球擦拭腹膜消毒。用注射器注射10ml不完全培养基至腹腔,注意避免穿入肠管。右手固定注射器,使针头留置在腹腔内,左手持酒精棉球轻轻按摩腹部1分钟,随后吸出注入的培养液。1000r/min离心5-10分钟,弃上清。先用5ml HAT培养基将沉淀细胞悬浮,根据细胞计数结果,补加HAT培养基,使细胞浓度为2×105/ml,备用。通常对巨噬细胞来说,96孔培养板每孔需2×104个细胞,24孔板每孔需105细胞。每只小鼠可得3-5×106个细胞,因此一只小鼠可供两块96孔板的饲养细胞。也可在细胞融合前1-2天制备并培养饲养细胞,这样使培养板孔底先铺上一层饲养细胞层。做法是,将上述细胞悬液加入96孔板,每孔0.1ml(相当于2滴),然后置37℃ 6% CO2的培养箱中培养。

⑸ 细胞融合与杂交瘤细胞的选择性培养
细胞融合的程序已报道的有很多种,这里介绍的是作者所在实验室常用的一种。
A、 将1×108脾细胞与2×107-5×107骨髓瘤细胞SP2/0-Ag14混合于一支50ml融合管中,补加不完全培养基至30ml,充分混匀。
B、 1000r/min离心5-10分钟,将上清尽量吸净。
C、 在手掌上轻击融合管底,使沉淀细胞松散均匀;置40℃水浴中预热。
D、 用1ml吸管在1分钟左右(最佳时间为45秒)加预热至40℃的50% PEG(PH 8.0)1ml,边加边轻轻搅拌。
E、 用10ml吸管在90秒内加20-30ml预热至37℃的不完全培养基;20-37℃静置10分钟。
F、 1000r/min 5分钟;弃去上清。
G、 加入5ml HAT培养基,轻轻吹吸沉淀细胞,使其悬浮并混匀,然后补加含腹腔巨噬细胞的HAT培养基至80-100ml。
H、 分装96孔细胞培养板,每孔0.10-0.15ml;分装24孔板,每孔1.0-1.5ml;然后将培养板置37℃,6% CO2培养箱内培养。
I、 5天后用HAT培养基换出1/2培养基。
J、 7-10天后用HT培养基换出HAT培养基;(第14天后可用普通完全培养基)。
L、 经常观察杂交瘤细胞生长情况,待其长至孔底面积1/10以上时吸出上清供抗体检测。

3、杂交瘤细胞筛选
杂交瘤细胞在融合后2周左右即可筛选,即把分泌所需抗体的杂交瘤孔从众多的孔中选出来,通常也称为抗体检测。抗体检测的方法很多,通常根据所研究的抗原和实验室的条件而定。但作为杂交瘤筛选的抗体检测方法必须具有快速、准备、简便,便于一次处理大量样品等特点。因为往往有几百个样品需要在短短几个小时就报告结果,以便决定杂交瘤细胞的取舍。所以选用抗体检测方法的原则是快速、敏感、特异、可靠、花费小和节省人力。一般说来,在融合之前就必须建立好抗体检测方法,并克服可能存在的问题。另一个重要问题是抗体检测方法所需要的“动力学范围”,即检出背景以上的最强与最弱信号之比,依所用的检测抗原是否纯净而定。如杂交瘤抗体是针对纯化的蛋白质抗原的,100%的抗原参与反应,一个阳性/阴性判别系统就够了。另一方面,如果杂交瘤抗体是针对细胞表面微量的蛋白抗原,检测系统可能需要能测出微弱信号,则动力学范围至少应为10:1,最好为100:1。另外,检测方法的选择还受所需杂交瘤抗体的类型和预定的用途的影响。结合补体的抗体可以用基于细胞毒性反应的检测方法来选出。如需结合A蛋白的杂交瘤抗体,就要用结合蛋白A的检测方法。

2、骨髓瘤 培养

杂交瘤技术在具体操作上,各实验室使用的程序不尽一致。本节中介绍的方法是作者所在实验室采用的、实践证明成熟的程序,该程序适合国内大多数实验室。

在开展杂交瘤技术制备单抗之前,培养骨髓瘤和杂交瘤细胞必须具备下列主要仪器设备:超净工作台、CO2恒温培养箱、超低温冰箱(-70℃)、倒置显微镜、精密天平或电子天平、液氮罐、离心机(水平转子,4000r/min)、37℃水浴箱、纯水装置、滤器、真空泵等。其需要的主要器械包括:100ml、50ml、25ml细胞培养瓶,10ml、1ml刻度吸管,试管,滴管(弯头、直头),平皿,烧杯,500ml、250ml、100ml盐水瓶,青霉素小瓶,10ml、5ml、1ml注射器等,96孔、24孔细胞培养板,融合管(50ml圆底带盖玻璃或塑料离心管),眼科剪刀,眼科镊,血细胞计数板,可调微量加样器(~50ul,~200ul,~1000ul),弯头针头,200目筛网,小鼠固定装置等。此外,杂交瘤细胞的筛选与检测的仪器设备,依据检测单抗的方法不同而各异,请参阅本节有关部分。

淋巴细胞杂交瘤技术的主要步骤包括:动物免疫、细胞融合、杂交瘤细胞的筛选与单抗检测、杂交瘤细胞的克隆化、冻存、单抗的鉴定等,图6-1概括了淋巴细胞杂交瘤技术研制单抗的主要过程。

1、动物免疫

(1) 抗原制备制备单克隆抗体的免疫抗原,从纯度上说虽不要求很高,但高纯度的抗原使得到所需单抗的机会增加,同时可以减轻筛选的工作量。因此,免疫抗原是越纯越好,应根据所研究的抗原和实验室的条件来决定。一般来说,抗原的来源有限,或性质不稳定,提纯时易变性,或其免疫原性很强,或所需单抗是用于抗原不同组分的纯化或分析等,免疫用的抗原只需初步提纯甚至不提纯,但抗原中混杂物很多,特别是如果这些混杂物的免疫原性较强时,则必须对抗原进行纯化。检测用抗原可以是与免疫抗原纯度相同,也可是不同的纯度,这主要决定于所用筛检方法的种类及其特异性和敏感性。

(2) 免疫动物的选择根据所用的骨髓瘤细胞可选用小鼠和大鼠作为免疫动物。因为,所有的供杂交瘤技术用的小鼠骨髓瘤细胞系均来源于BALB/c小鼠,所有的大鼠骨髓瘤细胞都来源于LOU/c大鼠,所以一般的杂交瘤生产都是用这两种纯系动物作为免疫动物。但是,有时为了特殊目的而需进行种间杂交,则可免疫其他动物。种间杂交瘤一般分泌抗体的能力不稳定,因为染色体容易丢失。就小鼠而言,初次免疫时以8-12周龄为宜,雌性鼠较便于操作。

(3) 免疫程序的确定免疫是单抗制备过程中的重要环节之一,其目的在于使B淋巴细胞在特异抗原刺激下分化、增殖,以利于细胞融合形成杂交细胞,并增加获得分泌特异性抗体的杂交瘤的机会。因此在设计免疫程序时,应考虑到抗原的性质和纯度、抗原量、免疫途径、免疫次数与间隔时间、佐剂的应用及动物对该抗原的应答能力等。没有一个免疫程序能适用于各种抗原。现用的免疫程序中多数是参照制备常规多克隆抗体的方法。表6-1列举了目前常用的免疫程序。免疫途径常用体内免疫法包括皮下注射、腹腔或静脉注射,也采用足垫、皮内、滴鼻或点眼。最后一次加强免疫多采用腹腔或静脉注射,目前尤其推崇后者,因为可使抗原对脾细胞作用更迅速而充分。在最后一次加强免疫后第3天取脾融合为好,许多实验室的结果表明,初次免疫和再次免疫应答反应中,取脾细胞与骨髓瘤细胞

融合,特异性杂交瘤的形成高峰分别为第4天和第22天,在初次免疫应答时获得的杂交瘤主要分泌IgM抗体,再次免疫应答时获得的杂交瘤主要分泌IgG抗体。笔者体会阳性杂交瘤出现的高峰与小鼠血清抗体的滴度并无明显的平行关系,且多在血清抗体高峰之前。因此,为达到最高的杂交瘤形成率需要有尽可能多的浆母细胞,这在最后一次加强免疫后第3天取脾进行融合较适宜。已有人报道采用脾内免疫,可提高小鼠对抗原的免疫反应性,且节省时间,一般免疫3天后即可融合。

表6-1 不同免疫抗原的免疫程序

免疫原特性 抗原量 接种次数 间隔时间 单抗的特性 抗体滴度 亲和性

免疫原性强(如细胞、细菌和病毒等) 106-107个细胞或1-10ug 2-4 2-4周 高 中等至强

免疫原性中等 10-100ug 2-4 2-4周 中等或高中等或强

免疫原性弱 A.20-400ug 2-4 随后 2-3 每月 2-3月中等 强

B.10-50ug 其后 200-400ug 2 其后 4 每月 每天 中等 中等

C.10-100ug 2 其后 4 其后“休息” 最后加强 每月 10天 1-2月

中等 中等或强

体内免疫法适用于免疫原性强、来源充分的抗原,对于免疫原性很弱或对机体有害(如引起免疫抑制)的抗原就不适用了。如果制备人单克隆抗体几乎不大可能采用体内免疫法。因此,针对这些情况,可采用体外免疫。所谓体外免疫就是将脾细胞(或淋巴结细胞,或外周血淋巴细胞)取出体外,在一定条件下与抗原共同培养,然后再与骨髓瘤细胞进行融合。其基本方法是取4-8周龄BALB/c小鼠的脾脏,制成单细胞悬液,用无血清培养液洗涤2-3次,然后悬浮于含10%小牛血清的培养液中,再加入适量抗原(可溶性抗原0.5-5ug/ml,细胞抗原105-106个细胞/ml)和一定量的BALB/c小鼠胸腺细胞培养上清液;在37℃,6%CO2浓度下培养3-5天,再分离脾细胞与骨髓瘤细胞融合。

2、细胞融合

(1) 主要试剂的配制

a、 细胞培养基杂交瘤技术中使用的细胞培养基主要有RPMI-1640或DMEM(Dulberco Modified Eagles Medium)两种基础培养基,具体配制方法按厂家规定的程序,配好后过滤除菌(0.22um),分装,4℃保存。

"不完全RPMI-1640培养基:RPMI-1640培养基原液96ml

100×L.G.溶液1ml

双抗溶液1ml

7.5% NaHCO3溶液1-2ml

HEPES溶液1ml

"不完全DMEM培养基:DMEM 13.37g

超纯水或四蒸水980ml

NaHCO3 3.7g

双抗溶液10ml

100×L.G.溶液10ml

用1N HCl调试PH至7.2-7.4,过滤除菌,分装4℃保存。

"完全RPMI-1640或DMEM培养基:不完全RPMI-1640或DMEM培养基80ml

小牛血清15-20ml

用于骨髓瘤细胞SP2/0和建株后的杂交瘤细胞培养。

"HT培养基:完全RPMI-1640或DMEM培养基99ml

HT贮存液1ml

"HAT培养基:完全RPMI-1640或DMEM培养基98ml

HT贮存液1ml

A贮存液1ml

b、 氨基喋呤(A)贮存液(100×,4×10-5mol/L) : 称取1.76mg氨基喋呤(Aminopterin MW 440.4),溶于90ml超纯水或四蒸水中,滴加1mol/L NaOH 0.5ml中和,再补加超纯水或四蒸水至100ml。过滤除菌,分装小瓶(2ml/瓶),-20℃保存。

c、次黄嘌呤和胸腺嘧啶核苷(HT)贮存液(100×,H:10-2mol/L,T:1.6×10-3mol/L): 称取136.1mg次黄嘌呤(Hypoxanthine,MW 136.1)和38.8mg胸腺嘧啶核苷(Thymidine,MW 242.2),加超纯水或四蒸水至100ml,置45-50℃水浴中使完全溶解,过滤除菌,分装小瓶(2ml/瓶),-20℃冻存。用前可置37℃加温助溶。

d、 L-谷氨酰胺(L.G.)溶液(100×,0.2mol/L) : 称取2.92g L-谷氨酰胺(L-glutamine,MW 146.15),用100ml不完全培养液或超纯水(或四蒸水)溶解,过滤除菌,分装小瓶(4-5ml/瓶),-20℃冻存。

e、 青、链霉素(双抗)溶液(100×): 取青霉素G(钠盐)100万单位和链霉素(硫酸盐)1g,溶于100ml灭菌超纯水或四蒸水中,分装小瓶(4-5ml/瓶),-20℃冻存。

f、 7.5% NaHCO3溶液 : 称取分析纯NaHCO3 7.5g,溶于100ml超纯水或四蒸水中,过滤除菌,分装小瓶(4-5ml/瓶),盖紧瓶塞,4℃保存。

g、 HEPES溶液(1mol/L): 称取23.83g HEPES(N-2-Hydroxyethylpiperazine-N,-2-ethanesulfonic acid,N-2-羟乙基哌嗪- N,-2-乙基磺酸,MW 238.3)溶于100ml超纯水或四蒸水中,过滤除菌,分装小瓶(4-5ml/瓶),4℃保存。

h、 8-氮鸟嘌呤贮存液(100×): 称取200mg 8-氮鸟嘌呤(8-azaguanine,MW 152.1),加入4mol/L NaOH 1ml,待其溶解后,加入超纯水或四蒸水99ml,过滤除菌;分装小瓶,-20℃冻存。使用时按1%浓度加入到培养液中(即终浓度为20ug/ml)。

g. 用新配制的10% Giemsa染液染色10-20分钟,然后用自来水洗去染液,自然干燥。(Giemsa染液配方:Giemsa粉0.5g,甘油33ml,55-60℃保温2小时,加甲醇33ml混匀,保存于棕色瓶内作为原液;取原液1份,加1/15mol/L PH6.8 PBS 9份,即成10% Giemsa染液)。

h. 镜检:选择染色体分散好,无重叠,无失散的细胞进行观察分析。每份标本应计数100个完整的中期核细胞,并注意观察是否有标志染色体。

i、 50% PEG: 称取PEG 1000 或4000 20-50g于三角瓶中,盖紧,60-80℃水浴融化,0.6ml分装于青霉素小瓶中,盖紧,8磅高压蒸汽15分钟,-20℃存放备用。临用前加热融化,加等量不完全培养基,用少许7.5% NaHCO3调PH至8.0,或购买Sigma或Gibco公司现成产品。

⑵ 髓瘤细胞的准备
融合前骨髓瘤细胞维持的方式,对成功地得到杂交瘤是最为重要的。目标是使细胞处于对数生长的时间尽可能长,融合前肯定不能少于1周。冻存的细胞在复苏后要2周时间才能处于适合于融合的状态,长过了的骨髓瘤细胞至少几天才可能恢复。在实验室中处于对数生长的骨髓瘤细胞维持在含10%小牛血清的培养基中,方法是用6个装5ml培养基的培养瓶,接种10倍系列稀释的骨髓瘤细胞。1周后到细胞相当密而又未长过的一瓶重新移植。典型的倍增时间为14-16小时。
骨髓瘤细胞悬液的制备方法如下:
a、于融合前48-36小时,将骨髓细胞扩大培养(一般按一块96孔板的融合试验约需2-3瓶100ml培养瓶培养的细胞进行准备)。
b、融合当天,用弯头滴管将细胞从瓶壁瘤轻轻吹下,收集于50ml离心管或融合管内。
c、 1000r/min离心5-10分钟,弃去上清。
d、加入30ml不完全培养基,同法离心洗涤一次。然后将细胞重悬浮于10ml不完全培养基,混匀。
e、取骨髓瘤细胞悬液,加0.4%台盼蓝染液作活细胞计数后备用。细胞计数时,取细胞悬液0.1ml加入0.9ml台盼蓝染液中,混匀,用血球计数板计数。计算细胞数目的公式为:每毫升细胞数=4个大方格细胞数×105/4;或每毫升细胞数=5个中方格细胞数×106/2

⑶ 脾淋巴细胞的准备
取已经免疫的BALB/c小鼠,摘除眼球采血,并分离血清作为抗体检测时的阳性对照血清。同时通过颈脱位致死小鼠,浸泡于75%酒精中5分钟,于解剖台板上固定后掀开左侧腹部皮肤,可看到脾脏,换眼科剪镊,在超净台中用无菌手术剪剪开腹膜,取出脾脏置于已盛有10ml不完全培养基的平皿中,轻轻洗涤,并细心剥去周围结缔组织。将脾脏移入另一盛有10ml不完全培养基的平皿中,用弯头镊子或装在1ml注射器上的弯针头轻轻挤压脾脏(也可用注射器内芯挤压脾脏),使脾细胞进入平皿中的不完全培养基。用吸管吹打数次,制成单细胞悬液。为了除去脾细胞悬液中的大团块,可用200目铜网过滤。收获脾细胞悬液,1000r/min离心5-10分钟,用不完全培养基离心洗涤1-2次,然后将细胞重悬于10ml不完全培养基混匀,取上述悬液,加台酚蓝染液作活细胞计数后备用。通常每只小鼠可得1×108-2.5×108个脾细胞,每只大鼠脾脏可得5×108-10×108脾细胞。

⑷ 饲养细胞(Feeder cells)的制备
在细胞融合后选择性培养过程中,由于大量骨髓瘤细胞和脾细胞相继死亡,此时单个或少数分散的杂交瘤细胞多半不易存活,通常必须加入其他活细胞使之繁殖,这种被加入的活细胞称为饲养细胞。饲养细胞促进其他细胞增殖的机制尚不明了,一般认为它们可能释放非种属特异性的生长刺激因子,为杂交瘤细胞提供必要的生长条件;也可能是为了满足新生杂交瘤细胞对细胞密度的依赖性。
常用的饲养细胞有胸腺细胞、正常脾细胞和腹腔巨噬细胞。其中以小鼠腹腔巨噬细胞的来源及制备较为方便,且有吞噬清除死亡细胞及其碎片的作用,因此使用最为普遍。其制备方法如下:
按上述采小鼠脾细胞的方法将小鼠致死、体表消毒和固定后,用消毒剪镊从后腹掀起腹部皮肤,暴露腹膜。用酒精棉球擦拭腹膜消毒。用注射器注射10ml不完全培养基至腹腔,注意避免穿入肠管。右手固定注射器,使针头留置在腹腔内,左手持酒精棉球轻轻按摩腹部1分钟,随后吸出注入的培养液。1000r/min离心5-10分钟,弃上清。先用5ml HAT培养基将沉淀细胞悬浮,根据细胞计数结果,补加HAT培养基,使细胞浓度为2×105/ml,备用。通常对巨噬细胞来说,96孔培养板每孔需2×104个细胞,24孔板每孔需105细胞。每只小鼠可得3-5×106个细胞,因此一只小鼠可供两块96孔板的饲养细胞。也可在细胞融合前1-2天制备并培养饲养细胞,这样使培养板孔底先铺上一层饲养细胞层。做法是,将上述细胞悬液加入96孔板,每孔0.1ml(相当于2滴),然后置37℃ 6% CO2的培养箱中培养。

⑸ 细胞融合与杂交瘤细胞的选择性培养
细胞融合的程序已报道的有很多种,这里介绍的是作者所在实验室常用的一种。
A、将1×108脾细胞与2×107-5×107骨髓瘤细胞SP2/0-Ag14混合于一支50ml融合管中,补加不完全培养基至30ml,充分混匀。
B、 1000r/min离心5-10分钟,将上清尽量吸净。
C、在手掌上轻击融合管底,使沉淀细胞松散均匀;置40℃水浴中预热。
D、用1ml吸管在1分钟左右(最佳时间为45秒)加预热至40℃的50% PEG(PH 8.0)1ml,边加边轻轻搅拌。
E、用10ml吸管在90秒内加20-30ml预热至37℃的不完全培养基;20-37℃静置10分钟。
F、 1000r/min 5分钟;弃去上清。
G、 加入5ml HAT培养基,轻轻吹吸沉淀细胞,使其悬浮并混匀,然后补加含腹腔巨噬细胞的HAT培养基至80-100ml。
H、分装96孔细胞培养板,每孔0.10-0.15ml;分装24孔板,每孔1.0-1.5ml;然后将培养板置37℃,6% CO2培养箱内培养。
I、 5天后用HAT培养基换出1/2培养基。
J、 7-10天后用HT培养基换出HAT培养基;(第14天后可用普通完全培养基)。
L、经常观察杂交瘤细胞生长情况,待其长至孔底面积1/10以上时吸出上清供抗体检测。

3、杂交瘤细胞筛选

杂交瘤细胞在融合后2周左右即可筛选,即把分泌所需抗体的杂交瘤孔从众多的孔中选出来,通常也称为抗体检测。抗体检测的方法很多,通常根据所研究的抗原和实验室的条件而定。但作为杂交瘤筛选的抗体检测方法必须具有快速、准备、简便,便于一次处理大量样品等特点。因为往往有几百个样品需要在短短几个小时就报告结果,以便决定杂交瘤细胞的取舍。所以选用抗体检测方法的原则是快速、敏感、特异、可靠、花费小和节省人力。一般说来,在融合之前就必须建立好抗体检测方法,并克服可能存在的问题。另一个重要问题是抗体检测方法所需要的“动力学范围”,即检出背景以上的最强与最弱信号之比,依所用的检测抗原是否纯净而定。如杂交瘤抗体是针对纯化的蛋白质抗原的,100%的抗原参与反应,一个阳性/阴性判别系统就够了。另一方面,如果杂交瘤抗体是针对细胞表面微量的蛋白抗原,检测系统可能需要能测出微弱信号,则动力学范围至少应为10:1,最好为100:1。另外,检测方法的选择还受所需杂交瘤抗体的类型和预定的用途的影响。结合补体的抗体可以用基于细胞毒性反应的检测方法来选出。如需结合A蛋白的杂交瘤抗体,就要用结合蛋白A的检测方法。

下面简要介绍几种常用的抗体检测方法:

⑴ 免疫酶技术

免疫酶技术是将抗原抗体反应的特异性和酶对底物显色反应的高效催化作用有机结合而成的免疫学技术。由于它特异性强,灵敏度高,现已广泛用于筛选和鉴定单抗。

A、器材和试剂

a. 包被缓冲液:

碳酸盐缓冲液:取0.2mol/L Na2CO3 8ml,0.2mol/L NaHCO3 17ml混合,再加75ml蒸馏水,调PH至9.6。

Tris-HCl缓冲液(PH8.0,0.02mol/L):取0.1mol/L Tris 100ml,0.1mol/L HCl 58.4ml混合,加蒸馏水至1000ml。

b. 洗涤缓冲液(PH7.2的PBS):KH2PO4 0.2g,KCl 0.2g,Na2HPO4"12H2O 2.9g,NaCl 8.0g,Tween-20 0.5ml,加蒸馏水至1000ml。

c. 稀释液和封闭液:牛血清白蛋白(BSA)0.1g,加洗涤液至100ml;或用洗涤液将小牛血清配成5-10%使用。

d. 酶反应终止液(2mol/L H2SO4):取蒸馏水178.3ml,滴加浓硫酸(98%)21.7ml。

e. 底物缓冲液(PH5.0,磷酸盐-柠檬酸缓冲液):取0.2mol/L Na2HPO4 25.7ml,0.1ml/L柠檬酸24.3ml,再加50ml蒸馏水。柠檬酸溶液及配成的底物缓冲液不稳定,易形成沉淀,因此一次不宜配制过多。

f. 底物使用液:

OPD底物使用液(测490nm的OD值):OPD 5mg,底物缓冲液10ml,3% H2O2 0.15ml。

TMBS或TMB底物使用液(测450nm的OD值):TMBS或TMB(1mg/ml)1.0ml,底物缓冲液10ml,1% H2O2 25ul。

ABTS底物使用液(测410nm的OD值):ABTS 0.5mg,底物缓冲液1ml,3% H2O2 2ul。

g. 抗体对照:以骨髓瘤细胞培养上清作为阴性对照,以免疫鼠血清作为阳性血清。

h. 抗原:可溶性抗原:尽量纯化,以获得高特异性。

病毒感染的传代细胞或全菌抗原。

淋巴细胞等悬液。

i. 酶标抗鼠抗体或酶标SPA或其他类似试剂。

j. 细胞固定液:-20℃丙酮;或丙酮-甲醛固定液:Na2HPO4 100mg,KH2PO4 500mg,蒸馏水150ml,丙酮225ml,甲醛125ml;或丙酮-甲醛溶液(1;1);或-20℃甲醇。

k. 聚苯乙烯微孔板:40孔、96孔、或条孔;硬板或软板均可使用。

l. 酶联免疫阅读仪;或光镜。

m. 吸管、加样器及水浴箱、离心机等。

B、 可溶性抗原的酶联免疫吸附试验(ELISA)

a. 纯化抗原用包被液稀释至1-20ug/ml。

b. 以50-100ul/孔量加入酶标板孔中,置4℃过夜或37℃吸附2小时。

c. 弃去孔内的液体,同时用洗涤液洗3次,每次3-5分钟,拍干。

d. 每孔加200ul封闭液4℃过夜或37℃封闭2小时;该步骤对于一些抗原,可省略。

e. 洗涤液洗3次;此时包被板可-20℃或4℃保存备用。

f. 每孔加50-100ul待检杂交瘤细胞培养上清,同时设立阳性、阴性对照和空白对照;37℃孵育1-2小时;洗涤,拍干。

g. 加酶标第二抗体,每孔50-100ul,37℃孵育1-2小时,洗涤,拍干。

h. 加底物液,每孔加新鲜配制的底物使用液50-100ul,37℃10-30分钟。

i. 以2mol/L H2SO4终止反应,在酶联免疫阅读仪上读取OD值。

j. 结果判定:以P/N≥2.1,或P≥N 3D为阳性。若阴性对照孔无色或接近无色,阳性对照孔明确显色,则可直接用肉眼观察结果。

C、 全菌抗原的ELISAS

a. 新鲜培养的细菌用蒸馏水或PBS悬浮,并调整细菌浓度至1×108个/ml。必须指出,对于人畜共患病病原体需注意安全操作,最好是灭活处理。

b. 每孔中加100ul 5%戊二醛溶液(0.1mol/L NaHCO3 95ml 25%戊二醛溶液5ml),37℃作用2小时,蒸馏水洗涤3次;加上述细菌悬液50ul/孔;37-56℃烘干;每孔加200ul封闭液4℃过夜或37℃ 2小时封闭。

c. 步骤b也可采用先每孔加50ul细菌悬液,37℃-56℃烘干,然后用-20℃预冷的无水甲醇室温作用15分钟,蒸馏水洗涤3次;每孔加200ul封闭液4℃过夜或37℃ 2小时封闭。

d. 洗涤液洗3次;此时包被板可在-20℃或4℃保存备用。

e. 以下步骤同上法。

D、 用全细胞抗原的ELISA

a. 按常规方法培养细胞,接种病毒,收获感染细胞和未感染细胞,进行细胞计数,用PBS制成适当浓度悬液。

b. 淋巴细胞悬液的制备采用新鲜外周血加肝素抗凝后,滴加于淋巴细胞分离液之上,1500rpm离心30分钟,吸取界面细胞洗涤二次,即为新鲜淋巴细胞悬液。该细胞悬液中若仍混有红细胞,离心后加0.83%的氯化铵溶液,室温10分钟,洗涤一次即可。将该细胞悬液稀释至适当浓度。

c. 每孔加100ul上述a或b的细胞悬液,使每孔含细胞5×104个;1500r/min 15分钟,甩去上清;室温干燥或吹干后用丙酮-甲醇(1:1)4℃固定10分钟;可4℃或-20℃保存备用。

d. 以下步骤同上法。

E、抗体捕捉ELISA试验

本法用抗BALB/c小鼠Ig的多克隆抗体捕捉待检样品中的McAb,再依次加抗原、酶标多克隆抗体及底物显色。该法是常用的ELISA中较理想的一种;其操作步骤如下:

a. 以适当浓度的纯化抗鼠Ig抗体包被酶标板,每孔加100ul,37℃ 2小时或4℃过夜。

b. 洗涤、拍干后加待测的McAb样品,37℃ 1-2小时。

c. 洗涤后加适量的抗原,37℃ 1-2小时。

d. 洗涤后加入酶标多克隆抗体,37℃ 1-2小时。洗涤后加底物显色,判定结果。

3、细胞培养基种类及适合于何种细胞

培养某一类型细胞没有固定的培养条件。在MEM中培养的细胞,很可能在DMEM或M199中同样很容易生长。总之,首选MEM做粘附细胞培养、RPMI-1640做悬浮细胞培养,各种目的无血清培养的首选是AIM V培养基(SFM)。在开始进行新的细胞培养时,可以参考下表所列的条件:
细胞系 细胞类型 种 组织 推荐使用的培养基
293 成纤维细胞 人 胚胎肾 MEM, 10% 热灭活马血清
3T6 成纤维细胞 小鼠 胚胎 DMEM, 10% 胎牛血清
A549 上皮细胞 人 肺癌 F-12K, 10%胎牛血清
A9 成纤维细胞 小鼠 结缔组织 DMEM, 10%胎牛血清
AtT-20 上皮细胞 小鼠 垂体肿瘤 F-10, 15% 马血清和2.5% 胎牛血清
BALB/3T3 成纤维细胞 小鼠 胚胎 DMEM, 10% 胎牛血清
BHK-21 成纤维细胞 仓鼠 肾 GMEM, 10% 胎牛血清 或MEM, 10% 胎牛血清 和NEAA
BHL-100 上皮细胞 人 乳房 McCoy'5A, 10% 胎牛血清
BT 成纤维细胞 牛 鼻甲骨细胞 MEM, 10% 胎牛血清 和 NEAA
Caco-2 上皮细胞 人 结肠腺癌 MEM, 20% 胎牛血清 和NEAA
Chang 上皮细胞 人 肝脏 BME, 10% 小牛血清
CHO-K1 上皮细胞 仓鼠 卵巢 F-12, 10% 胎牛血清
Clone 9 上皮细胞 大鼠 肝脏 F-12K, 10% 胎牛血清
Clone M-3 上皮细胞 小鼠 黑素瘤 F-10, 15% 马血清和 2.5% 胎牛血清
COS-1 成纤维细胞 猴 肾 DMEM, 10% 胎牛血清
COS-3 成纤维细胞 猴 肾 DMEM, 10% 胎牛血清
COS-7 成纤维细胞 猴 肾 DMEM, 10% 胎牛血清
CRFK 上皮细胞 猫 肾 MEM, 10% 胎牛血清 和NEAA
CV-1 成纤维细胞 猴 肾 MEM, 10% 胎牛血清
D-17 上皮细胞 狗 骨肉瘤 MEM, 10% 胎牛血清 和NEAA
Daudi 成淋巴细胞 人 淋巴瘤病人血液 RPMI-1640, 10% 胎牛血清
GH1 上皮细胞 大鼠 垂体肿瘤 F-10, 15% 马血清和 2.5% 胎牛血清
GH3 上皮细胞 大鼠 垂体肿瘤 F-10, 15% 马血清和2.5% 胎牛血清
H9 成淋巴细胞 人 T细胞淋巴瘤 RPMI-1640, 20% 胎牛血清
HaK 上皮细胞 仓鼠 肾 BME, 10% 小牛血清
HCT-15 上皮细胞 人 结肠直肠腺癌 RPMI-1640, 10% 胎牛血清
HeLa 上皮细胞 人 子宫颈癌 MEM, 10% 胎牛血清 和NEAA (in suspension, S-MEM)
HEp-2 上皮细胞 人 喉 癌 MEM, 10% 胎牛血清
HL-60 成淋巴细胞 人 早幼粒细胞白血病 RPMI-1640, 20% 胎牛血清
HT-1080 上皮细胞 人 纤维肉瘤 MEM, 10% HI 胎牛血清 和NEAA
HT-29 上皮细胞 人 结肠腺癌 McCoy's 5A, 10% 胎牛血清
HUVEC 内皮细胞 人 脐带 F-12K, 10% 胎牛血清 和 肝素盐 100 ug/ ml
I-10 上皮细胞 小鼠 睾丸癌 F-10, 15% 马血清和 2.5% 胎牛血清
IM-9 成淋巴细胞 人 骨髓瘤病人骨髓 RPMI-1640, 10% 胎牛血清
JEG-2 上皮细胞 人 绒毛膜癌 MEM, 10% 胎牛血清
Jensen 成纤维细胞 大鼠 肉瘤 McCoy's 5A, 5% 胎牛血清
Jurkat 成淋巴细胞 人 淋巴瘤 RPMI-1640, 10% 胎牛血清
K-562 成淋巴细胞 人 骨髓性的白血病 RPMI-1640, 10% 胎牛血清
KB 上皮细胞 人 口腔癌 MEM, 10% 胎牛血清 和NEAA
KG-1 骨髓白细胞 人 红白血病病人骨髓 IMDM, 20% 胎牛血清
L2 上皮细胞 大鼠 肺 F-12K, 10%胎牛血清
L6 大鼠 骨骼肌成肌细胞 DMEM, 10% 胎牛血清
LLC-WRC 256 上皮细胞 大鼠 癌 Medium 199, 5% 马血清
McCoy 成纤维细胞 小鼠 未知 MEM, 10% 胎牛血清
MCF7 上皮细胞 人 乳腺癌 MEM, 10% 胎牛血清 NEAA, 10ug/ml 胰岛素
WEHI-3b 类巨噬细胞 小鼠 骨髓单核细胞白血病 DMEM, 10% 胎牛血清
WI-38 上皮细胞 人 胚胎肺 BME, 10% 胎牛血清
WISH 上皮细胞 人 羊膜 BME, 10% 胎牛血清
WS1 人 胚胎皮肤 MEM, 10% 胎牛血清 和NEAA
XC 上皮细胞 大鼠 肉瘤 MEM, 10% 胎牛血清 和NEAA
Y-1 上皮细胞 小鼠 肾上腺瘤 F-10, 15% 马血清和 2.5% 胎牛血清

4、hbl-100细胞用什么培养基

培养某一类型细胞没有固定的培养条件。在MEM中培养的细胞,很可能在DMEM或M199中同样很容易生长。总之,首选MEM做粘附细胞培养、RPMI-1640做悬浮细胞培养,各种目的无血清培养的首选是AIM V培养基(SFM)。在开始进行新的细胞培养时,可以参考下表所列的条件:
细胞系 细胞类型 种 组织 使用的培养基
293 成纤维细胞 人 胚胎肾 MEM, 10% 热灭活马血清
3T6 成纤维细胞 小鼠 胚胎 DMEM, 10% 胎牛血清
A549 上皮细胞 人 肺癌 F-12K, 10%胎牛血清
A9 成纤维细胞 小鼠 结缔组织 DMEM, 10%胎牛血清
AtT-20 上皮细胞 小鼠 垂体肿瘤 F-10, 15% 马血清和2.5% 胎牛血清
BALB/3T3 成纤维细胞 小鼠 胚胎 DMEM, 10% 胎牛血清
BHK-21 成纤维细胞 仓鼠 肾 GMEM, 10% 胎牛血清 或MEM, 10% 胎牛血清 和NEAA
BHL-100 上皮细胞 人 乳房 McCoy'5A, 10% 胎牛血清
BT 成纤维细胞 牛 鼻甲骨细胞 MEM, 10% 胎牛血清 和 NEAA
Caco-2 上皮细胞 人 结肠腺癌 MEM, 20% 胎牛血清 和NEAA
Chang 上皮细胞 人 肝脏 BME, 10% 小牛血清
CHO-K1 上皮细胞 仓鼠 F-12, 10% 胎牛血清
Clone 9 上皮细胞 大鼠 肝脏 F-12K, 10% 胎牛血清
Clone M-3 上皮细胞 小鼠 黑素瘤 F-10, 15% 马血清和 2.5% 胎牛血清
COS-1 成纤维细胞 猴 肾 DMEM, 10% 胎牛血清
COS-3 成纤维细胞 猴 肾 DMEM, 10% 胎牛血清
COS-7 成纤维细胞 猴 肾 DMEM, 10% 胎牛血清
CRFK 上皮细胞 猫 肾 MEM, 10% 胎牛血清 和NEAA
CV-1 成纤维细胞 猴 肾 MEM, 10% 胎牛血清
D-17 上皮细胞 狗 骨肉瘤 MEM, 10% 胎牛血清 和NEAA
Daudi 成淋巴细胞 人 淋巴瘤病人血液 RPMI-1640, 10% 胎牛血清
GH1 上皮细胞 大鼠 垂体肿瘤 F-10, 15% 马血清和 2.5% 胎牛血清
GH3 上皮细胞 大鼠 垂体肿瘤 F-10, 15% 马血清和2.5% 胎牛血清
H9 成淋巴细胞 人 T细胞淋巴瘤 RPMI-1640, 20% 胎牛血清
HaK 上皮细胞 仓鼠 肾 BME, 10% 小牛血清
HCT-15 上皮细胞 人 结肠直肠腺癌 RPMI-1640, 10% 胎牛血清
HeLa 上皮细胞 人 子宫颈癌 MEM, 10% 胎牛血清 和NEAA (in suspension, S-MEM)
HEp-2 上皮细胞 人 喉 癌 MEM, 10% 胎牛血清
HL-60 成淋巴细胞 人 早幼粒细胞白血病 RPMI-1640, 20% 胎牛血清
HT-1080 上皮细胞 人 纤维肉瘤 MEM, 10% HI 胎牛血清 和NEAA
HT-29 上皮细胞 人 结肠腺癌 McCoy's 5A, 10% 胎牛血清
HUVEC 内皮细胞 人 脐带 F-12K, 10% 胎牛血清 和 肝素盐 100 ug/ ml
I-10 上皮细胞 小鼠 睾丸癌 F-10, 15% 马血清和 2.5% 胎牛血清
IM-9 成淋巴细胞 人 骨髓瘤病人骨髓 RPMI-1640, 10% 胎牛血清
JEG-2 上皮细胞 人 绒毛膜癌 MEM, 10% 胎牛血清
Jensen 成纤维细胞 大鼠 肉瘤 McCoy's 5A, 5% 胎牛血清
Jurkat 成淋巴细胞 人 淋巴瘤 RPMI-1640, 10% 胎牛血清
K-562 成淋巴细胞 人 骨髓性的白血病 RPMI-1640, 10% 胎牛血清
KB 上皮细胞 人 口腔癌 MEM, 10% 胎牛血清 和NEAA
KG-1 骨髓白细胞 人 红白血病病人骨髓 IMDM, 20% 胎牛血清
L2 上皮细胞 大鼠 肺 F-12K, 10%胎牛血清
L6 大鼠 骨骼肌成肌细胞 DMEM, 10% 胎牛血清
LLC-WRC 256 上皮细胞 大鼠 癌 Medium 199, 5% 马血清
McCoy 成纤维细胞 小鼠 未知 MEM, 10% 胎牛血清
MCF7 上皮细胞 人 癌 MEM, 10% 胎牛血清 NEAA, 10ug/ml 胰岛素
WEHI-3b 类巨噬细胞 小鼠 骨髓单核细胞白血病 DMEM, 10% 胎牛血清
WI-38 上皮细胞 人 胚胎肺 BME, 10% 胎牛血清
WISH 上皮细胞 人 羊膜 BME, 10% 胎牛血清
WS1 人 胚胎皮肤 MEM, 10% 胎牛血清 和NEAA
XC 上皮细胞 大鼠 肉瘤 MEM, 10% 胎牛血清 和NEAA
Y-1 上皮细胞 小鼠 肾上腺瘤 F-10, 15% 马血清和 2.5% 胎牛血清

5、捐献造血干细胞的动员剂有没有副作用,临床应用多少年了?

有副作用,只是属于可承受范围。
动员剂:
在捐献造血干细胞之前几天,会打一种叫粒细胞集落刺激因子,促进造血干细胞大量生长释放到外周血中。关于干细胞捐献者术前应用粒细胞集落刺激因子的问题。对可能产生的并发症存在顾虑。解释见下:
这种药物的全名叫:重组人粒细胞集落刺激因子注射液(rhG-CSF),是利用基因重组技术生产的。它可选择性的作用于粒系造血祖细胞,促进其增殖、分化,并可增加外周血中性粒细胞的数目和功能。在每个正常人体内都存在,是调节骨髓中粒系造血的主要细胞因子之一。
该药物进入临床应用已十余年,其有效性及安全性已得到了充分的验证。健康成人应用该药24小时后,其在尿中的浓度即已降至检出界限以下。连续多日用药,监测其血清药物浓度,未发现蓄积现象。
在该药的动物试验中,给小鼠一次注射相当于临床剂量近1000倍的药物,未发现有急性中毒反应。长期大量应用(4~13周)可出现ALP升高,脾重增加。但停药后即恢复。
其临床应用中报告的不良反应主要有以下:发热(1.3%);骨痛、腰痛(1.2%);肝功能异常(0.5%);皮疹(0.3%)等等。有极少数可发生过敏反应(发生率<1/4000),经积极抗过敏治疗能迅速消失。对于高敏体质者必要时可先做皮试。
对于再生障碍性贫血及先天性中性粒细胞减少症患者,有可能转化为骨髓增生异常综合征(MDS)或急性髓性白血病。对于MDS患者有可能促进幼稚细胞增殖,转化为髓性白血病。
需要强调的是:1、其副反应总的发生率约4.9%,并不比我们日常应用的其他药物多或者严重。2、其诱导产生白血病细胞的基础,是患者本身已有血液病。对于我们正常人而言,这种可能性并不存在。

【药品名称】

通用名:重组人粒细胞巨噬细胞集落刺激因子注射液

商品名:

英文名:Recombinant Human Granulocyte/Macrophage Colony-stimulating Factor Injection

汉语拼音:Chongzu Ren Lixibao Jushixibao Jiluocijiyinzi Zhusheye

主要组成成分:重组人粒细胞巨噬细胞集落刺激因子

【性状】

本品为无色透明的液体。

【药理毒理】

1.药理作用:重组人粒细胞巨噬细胞集落刺激因子(rhGM-CSF)作用于造血祖细胞,促进其增殖和分化,其重要作用是刺激粒、单核巨噬细胞成熟,促进成熟细胞向外周血释放,并能促进巨噬细胞及噬酸性细胞的多种功能。

2.毒理作用:
2.1急性毒性:结果表明,以最大浓度给小鼠静脉注射和皮下注射,未能求出LD50。其最大耐受量达5000μg/kg,相当于人临床用量(5~10μg/kg)的500~1000倍,观察14天,皮下注射和腹腔注射两种给药途径,动物均未见有明显行为异常,生长良好,毛色光泽,二便正常,无动物死亡。
2.2大鼠长期毒性:用90只Wister大鼠分为大剂量组(600μg/kg/日)和rhGM-CSF小剂量组(300μg/kg/日),每天皮下注射1次rhGM-CSF,连续五周,结果表明:试验组大鼠的活动、行为、进食情况、体重、大小便等均无异常。血液学和血液生化检查,各项指标及重要脏器肉眼和病理组织学检查,均未见异常改变。恢复性观察,也未发现延迟毒性反应。
2.3犬长期毒性试验:健康杂种犬rhGM-CSF300μg/kg/日和150μg/kg/日,每天皮下注射1次,连续五周,结果表明:rhGM-CSF对犬的活动、行为、进食情况、体重、二便、重要脏器重量均未见有明显影响。血液学和血液生化检查,各项指标正常,重要脏器肉眼和病理组织学检查,均未见异常改变。恢复性观察,未发现延迟毒性反应。
2.4生殖毒性试验——致畸敏感期毒性试验:rhGM-CSF大剂量(600μg/kg/日)使大鼠胎仔的体重和身长发育明显抑制,表明rhGM-CSF大剂量对大鼠胚胎发育有显著毒性。rhGM-CSF100μg/kg/日和20μg/kg/日对胎仔外观、体重、身长、尾长、内脏和骨骼等的影响,与生理盐水对照组比较,均无明显差异,未见畸形。表明rhGM-CSF100μg/kg/日和20μg/kg/日对大鼠胚胎发育无明显毒性。
2.5皮肤刺激试验:在家兔和豚鼠,rhGM-CSF15μg/0.1ml皮下注射,每日上午一次,连续七天,未观察到皮肤红斑和水肿,表明rhGM-CSF无皮肤刺激。

【药代动力学】

志愿者皮下注射3、10、20μg/kg和静脉注射3至30μg/kg可观察到血浓度峰值和曲线下面积(AUC)随剂量的增大而增高。皮下注射本品,在3~4小时血浓度达到峰值。静脉注射本品的清除半衰期为1~2小时,皮下注射则为2~3小时。小鼠皮下注射125I-GM-CSF后,肾脏含量最高,其次是胃和血液,心脏和骨骼中含量较低。在24小时内有45%药物经尿液排出,其中20%以原型排出,48小时内66~86%的药物经尿液排泄。

【适应症】

1.预防和治疗肿瘤放疗或化疗后引起的白细胞减少症。
2.治疗骨髓造血机能障碍及骨髓增生异常综合征。
3.预防白细胞减少可能潜在的感染并发症。
4.使感染引起的中性粒细胞减少的恢复加快。

【用法用量】

化疗药物给药结束后24~48小时起皮下或静脉注射本品,每日1次,本品的用量和用药时间应根据患者化疗的强度和中性粒细胞下降的程度决定,对化疗强度较大或粒细胞下降较明显的患者以2.5μg/kg/日的剂量连续用药7天以上较为适宜,至中性粒细胞恢复至5000/mm3停药。如所用化疗药物剂量较低,估计造成的骨髓抑制不太严重者,可考虑使用较低剂量预防中性粒细胞减少,以1.25μg/kg/日的剂量用药,至中性粒细胞数稳定于安全范围。对化疗后中性粒细胞已明显降低的患者(中性粒细胞数<1000mm3),以5μg/kg/日的剂量用药至中性粒细胞恢复至5000/mm3以上,稳定后终止本品治疗并监视病情。

【不良反应】

本品的安全性与剂量和给药途径有关。大部分不良反应多属轻到中度,严重的反应罕见。最常见的不良反应为发热、寒战、恶心、呼吸困难、腹泻,一般的常规对症处理便可使之缓解;其次有皮疹、胸痛、骨痛和腹泻等。据国外报道,低血压和低氧综合征在首次给药时可能出现,但以后给药则无此现象。不良反应发生多于静脉推注和快速滴注以及剂量大于32μg/kg/日有关。

【禁忌】

1.对rhGM-CSF或该制剂中任何其他成分有过敏史的病人以及对大肠杆菌表达的其他制剂有过敏史者禁用。
2.自身免疫性血小板减少性紫癜的病人。

【注意事项】

1.本品应在专科医生指导下使用。病人对rhGM-CSF的治疗反应和耐受性个体差异较大,为此应在治疗前及开始治疗后定期观察外周血白细胞或中性粒细胞,血小板数据的变化。血象恢复正常后立即停药或采用维持剂量。
2.本品属蛋白质类药物,用前应检查是否发生浑浊,如有异常,不得使用。
3.本品不应与抗肿瘤放、化疗药同时使用,如要进行下一疗程的抗肿瘤放、化疗,应停药至少48小时后,方可继续治疗。
4.孕妇、高血压患者及有癫痫病史者慎用。
5.使用前仔细检查,如发现瓶子有破损,溶解不完全者均不得使用,溶解后的药剂应1次用完。

【孕妇及哺乳期妇女用药】

孕妇及哺乳期妇女使用本品的安全性尚未建立,应慎重使用。

【儿童用药】

慎用。

【老年患者用药】

观察患者的状态,注意用量和间隔,慎重给药。

【药物相互作用】

1.本品与化疗药物同时使用,可加重骨髓毒性,因而不宜与化疗药物同时使用,应于化疗结束后24~48小时使用。
2.本品可引起血浆白蛋白降低,因此,同时使用具有血浆白蛋白高结合的药物应注意调整药物的剂量。
3.注射丙种球蛋白者,应间隔1个月以上再接种本品。

【药物过量】

文献报道,本品剂量达30μg/kg时,其不良反应的发生与常规用量相比,有明显增加和相关,一般停药后可自行缓解。

【规格】

75μg/支、150μg/支、300μg/支

6、大鼠骨髓来源巨噬细胞原代培养需要贴壁2个小时就换液吗

大鼠骨髓来源巨噬细胞原代培养需要贴壁2个小时就换液
系统名称应明确标明:酶的底物及所催化的反应性质.如果有两个底物都应写出,中间用冒号隔开.此外,底物的构型也应写出.
如谷丙转氨酶,其系统名称为L-丙氨酸:α-酮戊二酸氨基转移酶;
再例如对催化下列反应酶的命名.?
ATP+D-葡萄糖→ADP+D-葡萄糖-6-磷酸
该酶的正式系统命名是:ATP:葡萄糖磷酸转移酶,表示该酶催化从ATP中转移一个磷酸到葡萄糖分子上的反应.它的分类数字是:E.C.2.7.1.1,E.C代表按国际酶学委员会规定的命名,第1个数字(2)代表酶的分类名称(转移酶类),第2个数字(7)代表亚类(磷酸转移酶类),第3个数字(1)代表亚亚类(以羟基作为受体的磷酸转移酶类),第4个数字(1)代表该酶在亚-亚类中的排号(D葡萄糖作为磷酸基的受体).
如果其中一个底物是水,可以省去不写,如D-葡萄糖-δ-内酯水解酶,不必写成D-葡萄糖-δ-内酯:水水解酶.

7、大鼠胸腺正常重多少呢

胸腺

胸腺位于胸骨后面,紧靠心脏,呈灰赤色,扁平椭圆形,分左、右两叶,由淋巴组织构成。青春期前发充良好,青春期后逐渐退化,为脂肪组织所代替。
胸腺是造血器官,能产生淋巴细胞,并运送到淋巴结和脾脏等处。这种淋巴细胞对机体的细胞免疫具有重要作用。
生长激素和甲状腺素能刺激胸腺生长,而性激素则促使胸腺退化。
胸腺肽是胸腺产生的一种蛋白质和多肽激素,能刺激T淋巴细胞的成熟,平衡和调节免疫功能,是一种与机体的细胞免疫有密切关系的激素。人到成年后,胸腺逐渐萎缩,胸腺素分泌急剧减少或缺失,此时为提高免疫功能减弱的机体,补充胸腺素是所必须的。

免疫系统

参考资料:
胸腺
1.胸腺的结构 胸腺在胚胎早期由鳃沟外胚层和咽囊内胚层的上皮发生而成,故其早期原基是含有外胚层和内胚层的上皮组织;在淋巴干细胞迁入后,渐变为一种特殊的淋巴组织。小儿胸腺为薄片状粉红色软组织,分左右两叶,表面有薄层结缔组织被膜(capsule)。被膜结缔组织成片状伸入胸腺实质形成小叶间隔(interlobualr septum),将胸腺分成许多不完整的小叶。每个小叶分为皮质和髓质两部分。皮质内胸腺细胞密集,故着色较深;髓质含较多的上皮细胞,故着色较浅。小叶髓质常在胸腺深部相互连接(图9-6)。

图9-6 小儿胸腺
(1)皮质(cortex):皮质以上皮细胞为支架,间隙内含有大量胸腺细胞和少量巨噬细胞等(图9-7,9-8)。

图9-7 胸腺内细胞分布模式图

图9-8 大鼠胸腺皮质电镜像 ×7800
(白求恩医科大学尹昕、朱秀雄教授供图)
胸腺上皮细胞:皮质的上皮细胞有被膜下上皮细胞(subcapsular epithelial cell)和星形上皮细胞(stellate epithelial cell)两种。被膜下上皮细胞与结缔组织相邻的一侧呈完整的扁平上皮状,有基膜,相邻细胞间有许多桥粒连接,细胞的另一侧则有一些突起。有的细胞的胞质较丰富,胞质内含有一些内吞的胸腺细胞(图9-7),类似胸腺分离细胞中所见的哺育细胞(nurse cell)。哺育细胞为一大的圆形或椭圆形细胞,胞质内含有数个乃至数十个胸腺细胞,有的还进行有丝分裂,它们是Th细胞的前身。被膜下上皮细胞能分泌胸腺素和胸腺生成素。星形上皮细胞即通常所称的上皮性网状细胞(epithelial reticular cell),细胞多分支状突起,突起间以桥粒相互连接成网,细胞表面标志不同于被膜下上皮细胞,但与胸腺小体上皮细胞的相同。表面具有大量的MHC抗原。此种细胞不分泌激素,其质膜紧贴胸腺细胞,有诱导胸腺细胞发育分化的作用。
胸腺细胞(thymocyte):即T细胞的前身,它们密集于皮质内,占胸腺皮质细胞总数的85%~90%。淋巴干细胞迁入胸腺后,先发育为体积较大的早期胸腺细胞(约占3%)。它们经增殖后成为较小的普通胸腺细胞,其特点为开始出现T细胞抗原受体(TCR),且渐表达CD4和CD8抗原,此种细胞约占胸腺细胞总数的75%,它们对抗原尚无应答能力。普通胸腺细胞正处于被选择期,凡能与机体自身抗原相结合或与自身MHC抗原不相容的胸腺细胞(约占95%)将被灭活或淘汰,少数选定的细胞则继续分化,从而建立符合机制需要的淋巴细胞TCR库。进一步成熟的普通胸腺细胞,其CD4和CD8之中有一种增强,另一种减弱或消失,结果CD4+的细胞约占2/3,CD8+的细胞占1/3。
(2)髓质(mella):髓质内含大量胸腺上皮细胞和一些成熟胸腺细胞、交错突细胞和巨噬细胞。上皮细胞有两种(图9-7):①髓质上皮细胞(mellary epithelial cell),呈球形或多边形,胞体较大,细胞间以桥粒相连,间隙内有少量胸腺细胞。髓质上皮细胞是分泌胸腺激素的主要细胞。②胸腺小体上皮细胞(thymic corpuscle epithelial cell),它构成胸腺小体(thymic corpuscle),胸腺小体直径30~150μm,散在分布于髓质内,由上皮细胞呈同心圆状包绕排列而成,是胸腺结构的重要特征。小体外周的上皮细胞较幼稚,细胞核明显,细胞可分裂;近小体中心的上皮细胞较成熟,胞质中含有较多的角蛋白,核渐退化;小体中心的上皮细胞则已完全角质化,细胞呈嗜酸性染色,有的已破碎呈均质透明状,中心还常见巨噬细胞或噬酸性粒细胞。胸腺小体上皮细胞不分泌激素,功能未明,但缺乏胸腺小体的胸腺不能培育出T细胞。髓质内的胸腺细胞数量虽少,但均已成熟,并具有免疫应答的能力。髓质内还有少数散在分布的交错突细胞和巨噬细胞,Th细胞常群集于交错突细胞附近。巨噬细胞也参与胸腺内微环境的形成,其分泌物能促进胸腺细胞的分化。
(3)胸腺的血液供应及血胸腺屏障:几条小动脉从胸腺四周穿越被膜进入小叶间隔,在皮质与髓质交界处形成微动脉,并发出许多毛细血管分布于皮质。这些毛细血管又汇入皮髓质交界处的毛细血管后微静脉,其中有部分微静脉是高内皮的,它是胸腺内淋巴细胞进出血流的主要通道。髓质的毛细血管常为有孔型,汇入微静脉后经小叶间隔及被膜出胸腺。据统计,大鼠胸腺静脉血液中的淋巴细胞数量约为动脉血的1.5倍。
实验表明血液内的大分子物质不易进入胸腺皮质内,说明皮质的毛细血管及其周围结构具有屏障作用,称为血-胸腺屏障(blood-thymus barrier)(图9-9)。血-胸腺屏障由下列数层构成:①连续性毛细血管,其内皮细胞间有完整的紧密连接;②内皮基膜;③血管周隙,其中含有巨噬细胞;④上皮基膜;⑤一层连续的上皮细胞。

图9-9 血-胸腺屏障结构模式图
近来发现胸腺被膜内的毛细血管是有孔的,血内含有的各种自身抗原分子易经此渗出,进入靠近被膜的胸腺皮质内。这些微量的自身抗原与未成熟的普通胸腺细胞的相应抗原受体结合后,可导致该细胞的灭活或淘汰,从而使胸腺产生的某些T细胞对自身抗原具有免疫耐受性或无应答性。此外;髓质血管的血管周隙较大,其中有多种细胞成分,如T细胞、B细胞、浆细胞、肥大细胞、嗜酸性粒细胞、成纤维细胞和脂肪细胞等;大的血管周隙内还可含有毛细淋巴管,内含较多的淋巴细胞,可能是胸腺输出淋巴细胞的另一条通路。
2.胸腺的功能 胸腺是培育和选择T细胞的重要器官。胸腺上皮细胞分泌的胸腺素(thymosin)和胸腺生成素(thymopoietin)均能促进胸腺细胞的分化,巨噬细胞和交错突细胞也参与胸腺内微环境的形成。胸腺培育出的各种处女型T细胞,经血流输送至周围淋巴器官和淋巴组织。
胸腺有明显的年龄性变化。幼儿期的胸腺较大,重约27g,此后缓慢地退化,皮质渐变薄,胸腺细胞数量渐少,皮质和髓质的境界渐不明显,胸腺小体增大,脂肪细胞渐增多。85岁以后的胸腺,皮质已很少。此外,胸腺还是一个易受损害的器官,急性疾病、肿瘤、大剂量照射或大剂量固醇类药物等均可导致胸腺的急剧退化,胸腺细胞大量死亡与空竭;但病愈或消除有害因子后,胸腺的结构可渐恢复。若切除新生小鼠的胸腺,该动物即缺乏T细胞,不能排斥异体移植物;周围淋巴器官及淋巴组织中无次级淋巴小结出现,机体产生抗体的能力也明显下降。若在动物出生后数周再切除胸腺,此时因已有大量处女型T细胞迁至周围淋巴器官和淋巴组织内,已能行使一定的免疫功能,故短期内看不出影响,但机体的免疫力仍会逐渐下降。若给切除胸腺的新生动物移植一片胸腺,则能明显改善该去胸腺动物的免疫缺陷状态。
胸腺内有丰富的神经末梢,它们终止于胸腺细胞之间或上皮细胞及巨噬细胞附近。胸腺细胞表面有多种神经递质的受体,表明神经对胸腺细胞的发育分化有调节作用。 胸腺 胸腺能分泌多种肽类物质,如胸腺素(thymosin)、胸腺生长素(thymopoietin)等,它们促进T细胞分化成熟。 三、前列腺素 前列腺素(prostaglandin,PG)是广泛存在于动物和人体内的一组重要的组织激素。PG的化学结构一般是具有五元环和两条侧链的二十碳不饱和脂肪酸。根据其分子结构的不同,可把PG分为A、B、D、E、F、H、I等型。 细胞膜的磷脂化在磷脂酶A2的作用下,生成PG的前体枣花生四烯酸。花生四烯酸在环氧化酶的催化下,形成不稳定的环内过氧化物枣PGG2,随后又转变为PGH2。PGH2在异构酶或还原酶的作用下,分别形成PGE2或PGF2α。PGG2与PGH2又可前列素合成酶的作用下,转变为前列环素(PGI2),在血栓烷合成酶的作用下变成血栓烷A2(TXA2)(图11-23) 图11-23 体内主要前列腺素的合成途径 另外,花生四烯酸在脂氧化酶的作用下,形成5-氢过氧酸,进而被代谢生成白三烯。 PG在体内代谢极快,除PGI2外,经过肺和肝被迅速降解灭活,在血浆中的半衰期公为1-2min。一般认为,PG不属于循环激素,而是在组织局部产生和释放,并对局部功能进行调节的组织激素。 PG的生物学作用极为广泛而复杂,几乎对机体各个系统的功能活动均有影响。例如,由血小板产生的TXA2,能使血小板聚集,还有能使血管收缩的作用。相反,由血管内膜产生PHG2,能抑制血小板聚集,并有舒张血管的作用。PGE2有明显的抑制胃酸分泌的作用,它可能是胃液分泌的负反馈抑制物,PGE2可增加肾血流量,促进排钠利尿。此外,PG对体温调节、神经系统、以及内分泌与生殖均有影响。

成年人胸腺有重要的免疫作用
新生命网站编译最近,得克萨斯大学西南医学中心的研究者发现,胸腺在成年期继续发挥作用并且影响接受异源干细胞移植的病人的恢复。论文发表在美国血液协会的最新一期《血液》杂志上。研究者观察了白血病患者接受异源骨髓或干细胞移植治疗后胸腺所起的作用。这些病人因化疗而损失大量T细胞。得克萨斯大学西南医学中心内科助教授DanielDouek博士说,"我们的疑问是:经过同种异体移植后胸腺的确帮助再生新的免疫系统么?结果是肯定的,它再生了新的免疫系统;特别是小孩,胸腺的贡献巨大。"胸腺产生T细胞。T细胞对抗感染而帮助移植病人恢复。然后研究者观察影响胸腺分泌的主要因素,"目的是如果有什么可以抑制胸腺分泌的话,我们能够尝试临床上防止其发生的方法。"我们发现随着年龄的增长,胸腺的分泌减少,正如我们所预料的那样。最重要的是我们发现移植物抗宿主病完全阻断了胸腺新细胞的生成。"他说,"如果要重建作用广泛的新免疫系统你必须想办法消除移植物抗宿主病。"他补充说,用抑制免疫药物能治疗移植物抗宿主病,并且研究者还发现那些药物并不抑制胸腺的分泌。这就意味着移植物抗宿主病可以早期且积极的治疗而不损坏胸腺的分泌。Douek说下一步是要研究重建免疫系统的途径,目的是研制用于临床实验的各种化合物,并为促进免疫系统重建的临床实验打下基础。以前的研究显示胸腺只在儿童期具有活性尔后萎缩,但是1998年得克萨斯大学西南医学中心的研究者在《自然》上报道说胸腺在人的一生都持续产生T细胞。他们的研究对象是被HIV摧毁免疫系统的病人。去年发表在《柳叶刀》杂志上的一项研究中,研究者研究了年龄从34到66岁的接受自体同源骨髓移植的病人(化疗后接受了自己的骨髓),发现他们的胸腺再生了免疫系统。最近的研究涉及接受了更为普通的同种异体移植的病人。他们是来自4个医疗中心的67名从婴儿到成人的病人。

知道“免疫大王”是谁吗?
在人的胸骨上端,左右两肺之间,有一个火柴盒大小的黄灰色组织,这就是胸腺。以前人们把胸腺和阑尾(盲肠)一样看待,认为是一个没有用的、在进化过程中还没有来得及完全退化掉的器官。随着近半世纪来免疫学的进展,人们才认识到了胸腺在人体免疫功能中的重要作用,而把它誉为免疫大王。要知道胸腺在免疫中的大王地位,只要看看作为特异免疫主力军的淋巴细胞的作用和它们与胸腺的关系就清楚了。
血液中的淋巴细胞,70-80%为T淋巴细胞(简称T细胞)。它们原是骨髓里生长出的微小白色细胞,被血液送到胸腺里,受胸腺激素的培育,成为成熟的、但还没有免疫功能的T细胞,再把它们送到脾脏、淋巴系统和其它器官,让它们在那里受胸腺激素的影响进一步长大,随时准备抵抗各种对人体有害的敌人。胸腺激素还能提高淋巴细胞的杀伤能力,诱导B细胞(也是一种淋巴细胞)成熟。
T细胞按其功能可分为:
辅助性T细胞协助活化B细胞产生抗体,也可协助杀伤性T细胞及巨噬细胞发挥免疫功能。
抑制性T细胞对各种T细胞和B细胞都有抑制作用,调节和控制免疫反应,维持免疫自稳性(即免疫耐受性)。
功能性T细胞是被特异抗原刺激后分化增殖的致敏T细胞。可以直接杀伤异已物。
记忆性T细胞连同记忆性B细胞一起,是在搞原刺激后,保存特异抗原信息的淋巴细胞,寿命可长达数十年。当它们再次接受与原来相同的抗原刺激后,就可以分增殖为对付抗原的功能性T细胞或能产生抗体的浆细胞。
杀伤性T细胞杀伤异已物时需要抗体参与。
自然杀伤性T细胞杀伤异已物时不需要抗体和预先致敏的淋巴细胞的参与。有免疫监视功能,对杀伤肿瘤起重要作用。
在胚胎时期,胸腺比心脏,甚至比肺还要大,在青春时期达到最大,以后开始逐渐退化,到中年时减小到10克左右。胸腺组织逐渐由脂肪代替,到50岁之后,胸腺激素的分泌就完全停止。胸腺这个免疫大王,在建立、训练了一支免疫大军之后,就功成造退了。

胸腔异常可导致胆固醇升高
美中医学网(www.uschinahealth.com)记者报道,人们总是把血清中胆固醇升高归罪于不良的饮食习惯。殊不知血清胆固醇含量和人体脖子上一个称之为胸腺的功能有密切关系。
胸腺分泌一系列激素参与包括胆固醇在内的机体有机物质的代谢调节。专家们指出,胸腺性疾病是引起高胆固醇血症中仅次于饮食的主要原因之一。胸腺功能低下的人有25%到50%患有不同程度的高胆固醇血症;反之,有一成的高胆固醇血症患者伴有胸腺功能低下。因此当人们猛然发现自己有高胆固醇血症时,应该先去找医生检查一下自己的胸腺功能是否正常。
为此,美国临床内分泌医师协会近期发起了一个称之为“用脖子来控制胆固醇”的计划,旨在让人们了解胸腺与胆固醇之间的联系。

人在深度睡眠中会制造出生长素(HGH),其分泌的方式是用脉冲方式进行的,当人们进入40岁以后,或因精神压力,以及疾病造成深度睡眠减少时,生长素的分泌就会减少或停止分泌,科学家们发现35岁以上得人,生长素分泌比年轻时减少了将近75%,因此导致了人体内脏各器官的衰退和委缩,同时也导致了大多数人的福,脂肪堆积,肌肉松弛,免疫功能下降等,这都与生长素分泌减少有直接的关系。
生物学家指出,人的寿命应是性成熟期的5-7倍,若以20岁作为界限,人可以活到100-140岁,然而大多数人活不到这一年龄,主要是35岁以后生长素的分泌减少,使人体各脏、腑器官的委缩、尤其是胸腺器官的萎缩而造成免疫功能降低,人上了年纪以后,受疾病感染的机会更多,容易被病魔夺去生命,感染上多种因免疫功能低下而导致的恶性疑难病症,如:癌症、心脑血管疾病、糖尿病等。
医学研究证明,胸腺这一重要的人体气官位于胸骨柄后方,纵隔上部,紧贴在气管的前面,在胚胎发育早期,胸腺与甲状腺同出一源,人出生后胸腺许迅速生长,并渐行移居于胸骨后,出生时的胸腺约15克 ,由于少儿时生长素分泌量丰富,到青春期达到高峰,使胸腺这一器官达到30-40克,以后逐渐退化胸腺特别敏感于生长素(HGH),人在35岁以后生长素的分泌量减少,所以胸腺就逐渐退化,因此胸腺是人体中“寿命”较短的器官,进入老年后可逐渐被脂肪组织代替。
胸腺髓质微环境是培养T细胞的理想场所,T细胞被誉为人体健康卫士,它在细胞免疫反映中具有神通广大的本领,能直接杀伤进入人体的病原微生物和肿瘤细胞以及体内的异种毒素。T细胞产生于骨髓,是原始血细胞(造血干细胞)的后裔,原始血细胞随血液循环移居于胸腺,增殖分化成淋巴细胞,这些细胞的强者进入胸腺髓质内健康成长,获得了细胞免疫的重要功能。
可是人过35岁以后,胸腺渐行退化,最后寿终正寝。胸腺的退化与人的衰老密切相关,因为胸腺萎缩之后,人体内的T细胞大大减少,免疫系统和免疫功能也随之减弱,因此人体对B细胞的抑制作用也减弱了许多,B细胞往往不按需要产生抗体,不分敌我,胡乱攻击正常细胞,从而使人致病,造成免疫系统的紊乱。当代医学已证明很多老年性疾病与胸腺萎缩所致的T细胞减少有非常重要的因果关系。

退休的胸腺:有关T细胞发生的研究 王卉, 朱乃硕(上海复旦大学 生命科学学院,上海 200433)
胸腺是T细胞发育的主要场所。随着年龄的增长,胸腺不断退化,经典的理论认为胸腺只在生物发育早期行使功能。最新的发现却认为胸腺在成年后仍具有活性[1] 。AIDS病研究的有关进展有力地支持了这一观点。
1.T细胞在胸腺中的发育
胸腺是T细胞分化成熟并接受教育选择的中枢免疫器官。胸腺在胚胎早期发育成熟,自出生开始不断萎缩退化,老年人的胸腺充斥着脂肪组织,被认为没有活性,发育早期摘除胸腺会带来严重的免疫功能缺陷。胸腺分泌多种细胞因子促进T细胞的成熟,其上皮细胞富含多种类型抗原,为T细胞的发育提供了重要的微环境。
进入胸腺的CD4ˉCD8ˉ双阴性T细胞(double negative T cell)发育为CD4+ CD8+ 双阳性T细胞(double positive T cell)时发生T细胞受体(T cell receptor,TCR)基因的重排,T细胞与上皮细胞的主要组织相容性复合体(major histocompatibility complex, MHC)抗原相遇,接受阳性选择,获得MHC限制性识别能力,无MHC识别能力的的T细胞被清除,继而CD4或CD8单阳性T细胞(single positive T cell)与皮质髓质交界处的巨噬细胞(MΦ)和树突状细胞相遇,接受阴性选择,删除那些与自身抗原起反应的T细胞,获得免疫耐受性。上述过程可删除90%以上的胸腺细胞,保留下来的T细胞进入外周淋巴循环,称为初生T细胞(naive T cell),并在之后的免疫应答中进一步分化为效应T细胞(effect T cell)和记忆T细胞(memory T cell)[2]。
随着器官移植和AIDS病研究的发展,人们发现胸腺在免疫重建中可以产生新的初生T细胞,称为胸腺依赖途径(thymus-dependent pathway)。主要的反对意见认为这种T细胞来源于外周T细胞的增殖(peripheral T cell expansion), 称为非胸腺依赖途径(thymus-independent pathway),成为近年来的研究热点。
2.研究初生T细胞的新方法
(1)由Douek等发展的T细胞基因重组产物分析法
TCR基因表达为占绝大多数的αβTCR和占一小部分的γδTCR。位点δ位于α基因座,在Vα和Jα之间,TCRA和TCRB基因在重排中产生被切除DNA片段的游离环,即T细胞受体基因重组环(TCR-rearrangement excision circles,TRECs)。TRECs在等位基因上完全切除,并在外周组织中的T细胞中稳定存在,它不参与细胞染色体DNA的复制,并随着细胞分裂被逐代稀释。因此,TRECS水平可以反映胸腺内TCR基因的重组活性以及胸腺外T细胞的增殖效率。TCR重排的多样性必将伴随TRECs的多样性。但在所有有功能的αβTCR基因重排中,必须发生TCRA座位中TCRD的切除,分别产生信号连结TREC——sjTREC(signal-joint TREC)和编码连结TREC——cjTREC(coding-joint TREC),可作为初生T细胞的普遍标记[3]。
Douek研究小组通过此法发现TRECs水平随年龄增长呈递减趋势,即使某些对象已达70高龄但TRECs始终处于可探测水平,而先天性胸腺缺乏病人的TRECs水平则始终低于正常人群。说明胸腺能够持续发挥功能直至成年。
(2)McCune等发展的重氢法
McCune等将重氢标记的葡萄糖静脉注射入人体。葡萄糖是脱氧核糖的前体,可在T细胞复制时掺入DNA。随着T细胞的分裂,标记DNA不断被未标记DNA取代,于不同时间采血样分析,即可测量T细胞的产生率和平均寿命。McCune等发现AIDs病患者的CD4T细胞寿命显著缩短,在对患者施以抗逆转录病毒治疗(highly active antiretroviral therapy, HAART)后,T细胞的产生有明显提高,但其寿命无增长,显示出T细胞的重新生成在免疫重建中的重要作用[4]。
(3)胸腺切除方法
胸腺切除是研究胸腺功能的传统方法,但目前仍有广泛的应用。Haynes分别研究了胸腺遭切除和胸腺未切除的AIDS病人,发现前者在免疫重建中表现出一定的缺陷[5]。Berzines在新生胸腺组织的移植中发现,T细胞的输出率(export rate)和外周T细胞数量始终保持不变,而新迁入外周循环的胸腺细胞(recent thymic emigrants, RTEs)的表面标记与已定居T细胞不同,且RTEs的输出率与胸腺细胞输出率吻合良好。Berzines认为胸腺可以不断产生RTEs替代外周组织中的定居T细胞,并藉此维持人体T细胞库(T cell repertoire)的多样性[6]。
3.在有关AIDs病的研究中发现胸腺可以重建人体T细胞库
(1)TRECs水平分析
人体一旦感染HIV病毒,TRECs水平即迅速下降。对患者进行HAART治疗后,伴随HIV RNA拷贝数的减少,TRECs水平稳步增长,停止治疗后TRECs水平相应下降。鉴于初生T细胞的增殖不可能如此高速,而HIV对初生T细胞并无易感倾向,Douek认为更可能的解释是HIV破坏了胸腺的功能,抑制了前体胸腺细胞的生成,或者诱导了将表达CD4 T细胞的死亡,从而减少了初生T细胞的产量[1]。
(2)AIDS病人胸腺组织形态观察
对因AIDS死亡者作尸体解剖,发现其缺乏胸腺活性组织[5],胸腺细胞表现出死亡表征,髓质部分缺乏表达CD4和CD8的T细胞[7]。McCune发现新的HIV感染者具有高表达的胸腺组织,说明胸腺对HIV的感染能够作出反应。McCune认为对某些而不是全部患者而言,其胸腺功能甚至有所加强,因HIV感染而导致的T细胞的消亡诱发了某种胸腺成熟机制,将某种残留休眠T细胞(dormant T cell renament)唤醒[8]。
Steinmann[9]和Bofill[10]认为,真正的胸腺不会随着年龄的增长充斥着脂肪组织,在重症肌无力中也不会被炎症细胞所充斥,而只是存在于周边脉管空隙中(perivasculer),被埋藏于这些组织之中。尽管他们的学说显得难以接受,Haynes却认为有一定道理,他对死亡前两天的AIDS病人作CT检查,可以找到淋巴组织,但在随后的尸体解剖中却没有发现类似活性组织,取而代之的是脉管组织中的一些外周渗透细0胞,Haynes认为CT显示的淋巴组织只是一种假象,实际上是一些渗透了的炎症细胞,他提出一种假设,胸腺是由外周淋巴成分(存在于脉管组织中)和中心淋巴成分(存在于真正的胸腺皮质中)共同组成的[5]。(3)一种反对学说
主要的反对者比如 Pakker等认为,AIDS病人在治疗中所表现的免疫重建源于外周淋巴组织中再分配时生成的某种移居T细胞(sequestered T cell)的释放,因为98%的淋巴细胞留贮于外周淋巴组织中,人们有理由认为大部分CD4和CD8 T细胞被捕捉入受到感染并由于强烈的细胞毒作用而引起炎症的淋巴组织中,一旦HAART治疗减轻了病毒负载,炎症作用将缓解,细胞毒作用恢复正常水平,已移居的T细胞被释放[11]。
成熟T细胞和初生T细胞的表面标志有所不同,前者表现为CD45+ RO+,后者表现为CD45+ RA+,此学说的支持者认为在AIDs病人中能探测到初生T细胞的存在是由于成熟T细胞表面标志的反转。
Pakker的研究小组还发现淋巴组织产生的初生T细胞在外周循环中的重驻(repopulation)是一个漫长的过程,CD45+ RA+的增长引起CD4+ T细胞的重驻,这一现象在治疗开始后12个月方可见,同样的现象发生于骨髓移植(bone-marrow transplantation, BMT)中[11]。
(4)对非胸腺依赖途径的质疑
Douek认为AIDs病人的免疫重建应归功于胸腺依赖途径,因为没有数据可以支持如Pakker所说的退引细胞的保留库的存在。Douek在先天性胸腺发育不良者的少量外周T细胞中探测不到TRECs的存在,进一步证明尽管前T细胞有可能在淋巴结中进行TCR基因的重组,但肯定不能对TRECs的总体水平产生重大影响[3]。
Haynes研究了切除胸腺的AIDs病患者,发现其恢复效率明显低于未切除胸腺的病人;Hayens同时发现AIDs患者在接受HAART治疗前后T细胞库多样性并无显著变化[5]。考虑到Zhang等对HAART诱导的淋巴结修复机制和淋巴T细胞恢复作出的阐释[12]以及Douek的结论,Haynes认为胸腺和外周淋巴组织对T细胞库的重建具有同样重要的意义,并认为开始时CD4+ CD45RA+和CD4+ T细胞的增殖来源于非胸腺依赖途径[5]。
4.在组织移植中发现支持胸腺依赖途径的证据
最主要的证据来自于骨髓移植。Doumont-Girard通过研究接受移植物抗宿主病(graft versus host disease,GVHD)治疗的病人(这些病人因药物治疗体内T细胞水平几乎接近于0),发现在最初的6个月内,T细胞的增长几乎全部来自外周T细胞的增殖,表达CD45+ RO+ 表面标记,其TCR库多样性保持不变;CD4+ RA+的最初出现在6个月之后,伴随着TCR库多样性的波动,Dumont认为这种波动由CD4+ RA+ T细胞的多样性决定。显然,CD4+ RA+ T细胞是从胸腺中新迁入的。在所有的病人中,青少年的T细胞恢复速度明显高于成人,说明胸腺确实在免疫重建中扮演一定的角色[13]。
Mackall在皮肤移植手术中发现,胸腺被切除的女性病人不会出现针对其男同胞皮肤新抗原(neoantigen)而发生的排斥反应,并表现出对一般抗原应答的衰退,Mackall认为此现象无法仅仅通过外周淋巴细胞在免疫重建中的扩增解释,其必然与胸腺的持续活性相关[8]。
目前,非胸腺依赖途径和胸腺依赖途径之争依然没有得到圆满解决。CD45+ RA+ 和CD45+ RO+表面标记的不同究竟是来源于产生时的不同,还是后者向前者的逆转;HIV病毒究竟感染胸

8、骨髓巨噬细胞是半量换液还是全量换液

大鼠骨髓来源巨噬细胞原百代培养需要贴壁2个小时就换液
系统名称应明确标明:酶的底物及所催化的反应性质.如果有两个底物都应写出,中间用冒号隔开.此外,底物的构型也应写出.
如谷丙转氨酶,其系统名称为L-丙氨酸:α度-酮戊二酸氨基转移酶;
再例如对催化下列反应酶的命名.?
ATP+D-葡萄糖→ADP+D-葡萄糖-6-磷酸
该酶的正式系统命名是:ATP:葡萄糖磷酸转移酶,表示知该酶催化从ATP中转移一个磷酸到葡萄糖分子上的道反应.它的分类数字是:E.C.2.7.1.1,E.C代表按国际酶学委员会规定的命名,第1个数字(2)代表酶的分类名称(转移酶类),第2个数字(7)代表亚类(磷酸转移酶类),第3个数字(1)代表亚亚类(以羟基作专为受体的磷酸转移酶类),第4个数字(1)代表该酶在亚-亚类中的排号(D葡萄糖作为磷酸基的受体).
如果其中一个底物是水,可以省去不写,如D-葡萄糖-δ-内酯水解酶,不必写成D-葡萄糖-δ-内酯:水属水解酶.

与大鼠骨髓巨噬细胞培养相关的内容