1、什么是慢病毒包装
慢病毒载体(Lentiviral vector, LVs)是在HIV-1病毒基础上改造而成的病毒载体系统,它能高效的将目的版基因权(蛋白质编码序列、shRNA或gRNA)导入动物和人的原代细胞或细胞系。慢病毒载体基因组是正链RNA,其基因组进入细胞后,在细胞浆中被其自身携带的反转录酶反转为DNA,形成DNA整合前复合体,进入细胞核后,DNA整合到细胞基因组中。慢病毒载体介导的基因表达、RNAi或基因敲除作用持续且稳定,原因是目的基因整合到宿主细胞基因组中,并随细胞基因组的分裂而分裂。另外,慢病毒载体能有效感染并整合到非分裂细胞中。大量文献研究表明,慢病毒载体介导的目的基因长期表达的组织或细胞包括脑、肝脏、肌肉、视网膜、造血干细胞、骨髓间充质干细胞、巨噬细胞等。
慢病毒载体不表达任何HIV-1蛋白,免疫原性低,在注射部位无细胞免疫反应,体液免疫反应也较低,不影响病毒载体的第2次注射。
泉州指南针生物提供病毒包装(包括慢病毒包装,腺病毒包装,腺相关病毒包装)等多种包装服务!
2、DR5::GFP转基因株系在哪可以买到啊
一般你问发表文章的实验室要就可以了。
3、什么是细胞分化?是怎么分化的?
分化就是由细胞分裂后细胞发生功能的变化,组成不同的组织。细胞分化的过程是:受精卵分裂两个细胞,四个细胞,再到多个细胞后进行分化。
4、求药理学综述
这是我已经发表的药理方面的综述,你可以看一下,但不能用来发表,否则自己会有麻烦的。再者,综述参考文献一般较多,10篇左右的基本没有。国内综述一般参考文献20-30篇左右即可,而国外的好多综述的参考文献都是上百篇或者更多
心肌细胞凋亡与梗塞的研究进展
关键词:细胞凋亡 心肌缺血 心肌梗塞
细胞凋亡是细胞在正常的生理或病理状态下发生的一种自发的、程序化的死亡过程。细胞凋亡发生时呈现出独特的形态学和生物化学特征,其表现为细胞膜完整,细胞器形态改变较轻,细胞核固缩、断裂,最终形成凋亡小体并被巨噬细胞等清除。而且,凋亡细胞基因组的裂解产物在琼脂糖凝胶电泳图谱上呈现出典
型的DNA ladder。心肌缺血可引起缺血区及缺血边缘区心肌细胞的死亡,并可随后发展为心肌梗塞(myocardial infarction, MI),使心肌细胞死亡进一步加剧,最终可导致心衰的发生。近年来研究显示,细胞凋亡参与MI心肌细胞的死亡,并在心室重构、心功能改变过程中起关键作用[1,2]。现就心肌细胞凋亡与梗塞的研究进展综述如下。
1 心肌细胞凋亡存在于MI中的依据
心肌细胞凋亡是缺血所致MI心肌细胞死亡的途径之一。Yue等[3]发现,在缺血导致的大鼠MI 模型3d后通过原位末端脱氧核苷酸转移酶介导的切口末端标记法(TUNEL)和DNA laddering检测,梗塞边缘区(离梗塞区~500um)心肌细胞凋亡指数明显增高。Gu等[4]在心肌缺血诱发的MI动物模型中发现,与远离梗塞区相比,梗塞边缘区存在不规则形状的心肌细胞及大量的凋亡细胞核。Baldi等[5]报道在人类急性心肌梗塞(AMI)晚期尸解中,心肌细胞凋亡仍然非常活跃,而且远离梗塞区细胞凋亡指数(0.7%)远远低于梗塞区(25.4%)。以上说明细胞凋亡主要存在于梗塞区及梗塞边缘区。也有研究发现,在早期MI患者中远离梗塞区凋亡细胞数量仍然可观,但心肌细胞凋亡的存在并不能作为MI的诊断标志[6]。
2 心肌细胞凋亡与梗塞后心室重构
MI发生时引起心肌细胞丢失以及细胞外基质的一系列变化,导致心室重构的发生。心肌细胞凋亡与心室重构关系密切,抑制心肌细胞凋亡有利于心室功能的改善。研究发现,通过药物抑制心肌细胞凋亡可提高左心室射血分数,减少左心室舒张末期内径,改善心功能[4]。Sinagra等[7]研究发现,MI后由细胞凋亡引起的细胞丢失导致左心室舒张功能障碍,这可能是心室功能恶化的原因之一。Abbate等[8]最近发现,在两个不同的实验动物模型中,MI 24h之内通过抑制心肌细胞凋亡能够显著改善心室重构过程。Diwan等[9]在敲除鼠心脏促凋亡基因Bnip3的MI模型中研究发现,2d后梗塞边缘区及远离梗塞区的心肌细胞凋亡减少,3周后则显示出改善左心室收缩及抑制左心室扩张的功能,从而证实Bnip3是MI后心室重构的一个主要决定性因子。另外,AMI后远离梗塞区的左心室正常区域,心肌细胞凋亡明显增加,通过抑制此区域的心肌细胞凋亡能够逆转AMI后的不利反应,起到保护左心室功能的作用[10]。
3 与MI有关的凋亡调控因子
心肌细胞凋亡受多种蛋白、基因、生长因子的调控,Bcl-2家族是迄今研究最深入的凋亡调控因子之一,其促凋亡蛋白与抗凋亡蛋白的比值在决定细胞存亡中起关键作用。P53在调控心肌细胞凋亡中同样起重要作用。有研究证明,通过药物预处理能明显抑制实验性AMI大鼠心肌细胞中P53及Bax、Fas的表达,Bcl-2表达则增加,从而明显减少心肌细胞的凋亡[2]。人类血液中还存在可溶性Fas(sFas)和FasL(sFasL),前者通过抑制Fas与细胞膜上的FasL结合阻断细胞凋亡,后者可诱导细胞发生凋亡。Soeki等[11]研究发现,在AMI后1d血浆sFas浓度显著增加,14d后浓度减少,而sFasL浓度无明显变化。说明AMI早期,机体自身sFas浓度增加抑制心肌细胞凋亡;随着时间推移,sFas浓度减少,细胞凋亡加剧。该研究还发现,在心室重构患者中sFasL浓度于AMI 后14d及21d高于无心室重构患者,说明MI晚期发生心室重构的患者心肌细胞凋亡增多,sFasL起了诱导作用。
另外,hsp70是热休克蛋白家族(hsps)在心肌细胞保护中研究最成熟的成员之一[1]。Dybdahl[12]等对28例AMI患者研究发现,血液中hsp70和C反应蛋白(CRP)及白细胞介素-6(IL-6)显著增加,hsp70峰值浓度与心脏肌钙蛋白T及心肌肌酸激酶同工酶的峰值浓度相关。而且AMI后1d左心室射血分数与hsp70浓度呈负相关,说明hsp70浓度可能与梗塞面积有关。一些生长因子也参与心肌细胞凋亡的发生,如Davis等[13]在大鼠MI模型中通过生物素化的那诺芬使胰岛素样生长因子-1持续释放28d,与仅有那诺芬的组别比较,Akt活性增强,caspase-3减少28%。
4 心肌细胞凋亡的信号转导途径
在心肌细胞凋亡的信号转导途径中死亡受体途径与线粒体途径研究最成熟。 最近发现,阻断AT1受体能够明显减少Fas表达,从而抑制Fas/FasL介导的心肌细胞凋亡[14]。TNF-α也能通过与Fas/FasL相同的途径诱导心肌细胞凋亡。Sun等[15]在TNF-α敲除小鼠MI模型中发现,与正常小鼠相比远离梗塞区及无梗塞心肌中细胞凋亡数目非常少。线粒体在细胞凋亡过程中起着主开关作用。Cyt C释放到胞浆中后与凋亡活化因子-1、caspase-9分子形成凋亡体。凋亡体活化caspase-9,从而激活下游caspase分子,如caspase-3等,最终诱导凋亡的发生。有研究证明,抑制凋亡体的形成同时伴随caspase-9和-3的失活能够抑制心肌细胞凋亡[16]。另外,Bcl-2家族可调节线粒体途径中Cyt C的释放。通过抑制Bax通道的活化能够抑制Cyt C的释放,从而抑制细胞凋亡 [17]。
Akt在调节心肌细胞生长及存活中起重要作用,其途径的激活能够抑制心肌细胞凋亡[3]。Akt又称磷酸激酶B,是一种丝氨酸/苏氨酸蛋白激酶,包括Akt1、Akt2、Akt3三个亚型。其中Akt1和Akt2已被证实有抑制心肌细胞凋亡作用[3,4]。Akt激活后可使促凋亡因子Bad、caspase-9磷酸化及上调P53的负向调节蛋白,阻断以上因子介导的凋亡途径。有研究发现,三碘甲状腺原氨酸能够明显诱导MI边缘区Akt自身Ser473磷酸化,使此区域心肌细胞凋亡减少,而且MI后正常区Akt2有轻微表达但与模型组相比差异显著,其意义有待进一步研究[3]。最近丝裂原活化蛋白激酶(MAPK)途径在心肌细胞凋亡中的作用日益受到关注。MAPK有3个主要的亚家族:细胞外信号调节激酶(ERK),c-Jun氨基末端激酶(JNK)和P38 MAPK。其中P38 MAPK在心肌缺血后细胞凋亡的信号转导途径中起中枢作用,通过抑制P38 MAPK能明显上调Bcl-2蛋白表达[18]。
5 MI心肌细胞凋亡的防治
5.1 基因治疗
在包含人类A20基因的转基因小鼠MI模型中发现,在心脏中特异性过度表达人类A20基因可阻断IκB激酶β和P65活性,抑制NF-κB信号通路,减少caspase-3、-9及Cyt C和第二线粒体来源的半胱氨酸天冬氨酸蛋白水解酶激活剂(Smac)的释放,抑制心肌细胞凋亡。进一步研究发现,A20能够增强抗凋亡蛋白Bcl-2、X染色体凋亡蛋白抑制剂(XIAP)、细胞型Fas相关死亡域样白介素-1β转换酶抑制蛋白(cFLIP)的表达,减少促凋亡蛋白Fas、FasL、Bax的表达,明显缩小心肌梗塞面积,阻止左心室功能障碍和重构,延迟随后心衰的发生[19]。Rong等[20]在移植人生长激素(hGH)基因的大鼠心肌缺血模型中发现,缺血4周后GH可下调Bax表达,Bcl-2/Bax比率增加,心肌细胞凋亡被抑制;而且,左心室舒张末期内径和梗塞面积明显减小,心功能明显改善,这可能与血中IGF-1浓度升高、脑钠素水平明显降低有关。大量研究表明,P38 MAPK激活可诱导心肌细胞凋亡。MAPK磷酸化酶-1(MKP-1)可使P38 MAPK去磷酸化而钝化,在心肌缺血MKP-1转基因小鼠中,MKP-1过度表达明显抑制P38 MAPK活性,从而明显减轻梗死损伤程度[18]。也有研究发现,MI早期通过局部P38α基因转移增强P38 MAPK活性,同时增加血管发生相关因子表达,明显降低心肌细胞凋亡指数和减少心肌梗塞面积,改善MI后心室重构[21]。
5.2 干细胞移植治疗
干细胞移植为目前治疗缺血性心脏病的热点之一。由于胚胎干细胞的研究受到伦理道德及取材困难等因素的影响,研究者把更多的希望寄予成体干细胞。目前用于心肌细胞研究的成体干细胞主要有骨髓干细胞、骨髓间充质干细胞、内皮祖细胞、骨骼肌干细胞等。Uemura等[22]在鼠心肌缺血导致的MI模型中发现,骨髓干细胞(BMSC)治疗组心肌细胞Akt活性增加,TUNEL阳性细胞数明显减少。BMSC预处理组可通过旁分泌途径抑制心肌细胞凋亡,明显缩减梗塞面积,提高左心室射血分数,减轻MI后左心室重构。Berry等[23]将骨髓间充质干细胞(MSC)直接注入MI大鼠梗塞区及边缘区表现为TUNEL阳性细胞减少,梗塞面积减少,心肌收缩和舒张功能改善。虽然干细胞改善缺血心肌功能的机制尚不明确,其治疗结果存在争议,但大多数研究表明干细胞治疗缺血性心脏病是安全有效的,其最终疗效需进一步进行大样本、随机双盲、多中心的临床研究后才能确定。
5.3 天然产物活性成分治疗
天然产物中许多活性成分具有良好的抗心肌细胞凋亡的作用,这些成分主要集中于生物碱、苷类、萜类和黄酮类等化合物中。羟基积雪草苷(MA)是积雪草中的一种主要萜类化合物,研究发现经MA预处理的缺血所致的大鼠MI模型中乳酸脱氢酶、肌酸磷酸激酶释放减少,超氧化物歧化酶活性增强,丙二醛浓度及CRP活性显著降低,心肌细胞凋亡减轻,心肌梗塞面积缩小[24]。Ling等[25]研究发现,四方蒿总黄酮通过调节Bcl-2家族(Bcl-2表达增强,Bax表达降低)抑制心肌细胞凋亡,缩减心肌梗塞面积。绿茶的主要活性成分是表没食子儿茶精没食子酸酯(EGCG),Townsend等[26]研究发现,EGCG可通过抑制信号传导与转录活化因子-1(STAT-1)磷酸化,减少离体大鼠心脏中缺血诱导的心肌细胞凋亡,缩减心肌梗塞面积,改善心功能。在培养的乳鼠心肌细胞中,经EGCG预处理后同样能够抑制STAT-1自身酪氨酸701和丝氨酸727磷酸化,明显减少缺血诱导的Fas受体表达,降低caspase-3活性,抑制心肌缺血损伤诱导的心肌细胞凋亡。从苦苣中提取的单体木犀草素-7-O-β-D-葡萄糖苷可明显减少缺氧培养的乳鼠心肌细胞凋亡,使凋亡小体数目降低[27]。5.4 联合治疗
随着对MI心肌细胞凋亡的研究深入,大量药物治疗可以减少心肌细胞凋亡,改善MI后心功能。有研究发现,MI发生时一些炎症因子参与其中[12,28],通过研究炎症因子与细胞凋亡的关系,抗炎类药物可能会成为今后抑制MI心肌细胞凋亡的一个重要策略之一。另外,血管紧张素转化酶抑制剂(ACEI)、β受体阻滞剂(BB)、他汀类药物等都显示出一定的疗效。最近研究发现,通过药物和治疗方法之间的联合运用显示出优于单独运用其中任一方法的疗效。Boyle等[30]在缺血诱发的MI裸大鼠中分别通过ACEI和BB治疗、内皮祖细胞移植(EPC)治疗、EPC和ACEI/BB治疗,结果发现ACEI和BB治疗组在局部远离梗塞区减少75%的心肌纤维化,EPC治疗组通过诱导梗塞边缘区血管形成而阻抑此区域81%的心肌细胞凋亡,EPC联合ACEI/BB治疗组改善左心室功能的效果优于单独运用其中任一方法。Li等[31]在MI大鼠心肌内直接注射Bcl-2基因修饰的MSC与单独MSC移植相比,心肌细胞存活率明显升高,梗塞面积减少17%,心功能恢复显著。
6 小结
心肌缺血可导致心肌梗塞,国内外针对缺血引起的心肌梗塞中细胞凋亡的研究日益深入,并对参与心肌细胞凋亡的相关因子进一步明确,为此研发的一系列治疗方法及药物已经或即将应用到临床。但基因治疗中载体的选择、基因表达的调控等问题尚未解决,干细胞移植治疗仍缺乏大量随机双盲的临床证据,而联合治疗则显示出了更佳的疗效。另外,天然产物活性成分因其资源丰富、毒副作用少、疗效独特已引起广泛关注,从天然产物中寻找有效的活性成分抑制心肌细胞凋亡将成为防治MI极具潜力的途径之一。
参考文献
[1]Gill C, Mestril R, Samali A. Losing heart: the role of apoptosis in heart disease—a novel therapeutic target?. FASEB J, 2002, 16: 135~146.
[2]Ruixing Y, Dezhai Y, Jiaquan L. Effects of cardiotrophin-1 on hemodynamics and cardiomyocyte apoptosis in rats with acute myocardial infarction. J Med Invest, 2004, 51(1-2): 29~37.
[3]Yue-Feng Chen, Satoru Kobayashi, Jinghai Chen, Short term triiodo-L-thyronine treatment inhibits cardiac myocyte apoptosis in border area after myocardial infarction in rats. J Mol Cell Cardiol, 2008, 44(1): 180~187.
[4]Gu X, Cheng L, Chueng WL, et al. Neovascularization of ischemic myocardium by newly isolated tannins prevents cardiomyocyte apoptosis and improves cardiac function. Mol Med, 2006, 12(11-12): 275~283.
[5]Baldi A, Abbate A, Bussani R, et al. Apoptosis and post-infarction left ventricular remodeling. J Mol Cell Cardiol, 2002, 34(2): 165~174.
[6] Abbate A, Biondi-Zoccai GG, Baldi A. Pathophysiologic role of myocardial apoptosis in post-infarction left ventricular remodeling. J Cell Physiol, 2002, 193(2): 145~153.
[7]Sinagra G, Bussani R, Abbate A, et al. Left ventricular diastolic filling pattern at Doppler echocardiography and apoptotic rate in fatal acute myocardial infarction. Am J Cardiol, 2007, 99(3): 307~309.
[8]Abbate A, Salloum FN, Vecile E, et al. Anakinra a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation, 2008, 117(20): 2670~2683.
[9]Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest, 2007, 117(10): 2825~2833.
[10]Sun CK, Chang LT, Sheu JJ, et al. Losartan preserves integrity of cardiac gap junctions and PGC-1 alpha gene expression and prevents cellular apoptosis in remote area of left ventricular myocardium following acute myocardial infarction. Int Heart J, 2007, 48(4): 533~546.
[11]Soeki T, Tamura Y, Shinohara H, et al. Relation between circulating soluble Fas ligand and subsequent ventricular remodelling following myocardial infarction. Heart, 2003, 89(3): 339~341.
[12]Dybdahl B, Slørdahl SA, Waage A, et al. Myocardial ischaemia and the inflammatory response: release of heat shock protein 70 after myocardial infarction. Heart, 2005, 91(3): 299~304.
[13]Davis ME, Hsieh PC, Takahashi T, Tomosaburo Takahashi, et al. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proc Natl Acad Sci USA, 2006, 103(21): 8155~8160.
5、骨髓间充质干细胞有哪些好的细胞株
研究正常骨髓间充质干细胞(BMMSC)与骨髓瘤细胞株相互作用过程中,对BMMSC成纤维细胞激活蛋白(FAP)、增殖诱导配体(APRIL)、B细胞激活因子(BAFF)和胰岛素样生长因子(IGF-1)在mRNA表达水平以及对全基因表达谱的影响。
6、谁来给我讲讲治疗性克隆的最新发展?
1治疗性克隆概述
治疗性克隆(therapeutic cloning)是体细胞核移植技术和最新的人胚胎干细胞技术结合的产物,将成为人类医疗历史上革命性的技术. 该技术首先应用患者体细胞,如皮肤细胞、骨髓间充质干细胞,作为核供体,移植入去核的人卵母细胞,获得克隆胚胎;然后从克隆胚胎分离建立胚胎干细胞系;并将这些胚胎干细胞在一定条件下,诱导分化成所需要的各种类型的细胞用于治疗目的〔1,2〕. 目前已报道,将产生多巴胺的神经元细胞用于治疗帕金森症〔3〕,将产生胰岛素的胰岛细胞治疗糖尿病患者〔4〕. 从理论上来说由于使用的是患者自身的细胞生产出来的治疗用细胞,移植这些细胞到患者体内将不会产生免疫排斥反应. 另一方面,每年都有数以百万计的患者需要细胞、组织的修复或者器官移植,由于胚胎干细胞可以无限传代,在数量上可以保证治疗的需要,从而解决可供移植的细胞、组织和器官来源严重不足的瓶颈问题〔5〕,为人类健康和长寿提供了新的希望.
近年来,利用核移植技术和胚胎干细胞技术相继建立了人核移植胚胎干(nuclear transfer embryonic stem cell,ntES)细胞系和人兔异种间ntES细胞. 这2项阶段性研究成果的取得,标志着治疗性克隆研究的巨大进步. 韩国科学家Hwang等〔6〕通过核移植技术获得了人人ntES细胞. 他们以健康女性志愿者的体细胞为核供体,以其自身卵母细胞为受体. 在30枚核移植囊胚中,得到20个内细胞团(ICMs),建成1株人 ntES细胞系,可传代培养70 代以上. 上海第二医科大学盛惠珍研究小组〔7〕在国际上首次构建了人兔核移植重构胚. 分别将5,42,52和60岁4个年龄组的人皮肤成纤维细胞核移入去核兔卵母细胞内,获得ntES细胞,通过原位杂交、免疫组化、核型和同源基因分析等证实 ntES细胞具有人源性,并且保持干细胞的未分化特性,能形成类胚体,在一定诱导条件下可以分化为神经、肌肉等3个胚层的细胞群. 200506,汉城国立大学的研究者〔8〕以患者的皮肤细胞为供体,以志愿者捐赠的卵母细胞为受体,利用体细胞核移植技术成功建立11株人核移植胚胎干细胞,这些细胞具有多能性,染色体正常,与供核患者的DNA一致、组织相容性抗原一致.
2治疗性克隆的应用前景
ES细胞在生物医学的各个领域均有广阔的应用前景,ntES细胞也有着同样广阔的前景,为临床治疗学、细胞生物学、生物发育学、比较动物学等研究提供研究材料和方法.
2.1临床疾病的治疗ntES细胞与普通的细胞移植治疗相比,具有革命性的进步. 它以患者的体细胞为核供体,通过核移植技术获得的ntES细胞,与患者的遗传物质相同,可以消除受体对供体的免疫排斥反应,为目前多种退形性疾病,如心脏病、脊髓损伤、帕金森病、1型糖尿病等的治疗带来了新的希望. 特别是一些目前还没有找出致病基因的遗传病,如脊髓侧索硬化症,ntES细胞移植是最有希望的治疗方法. 目前已经应用ntES细胞在体内外分化成多种细胞,包括神经细胞和生殖细胞〔9,10〕. 尤其Barberi等〔9〕建立了一套方法,能使 ntES细胞向中枢神经系统细胞特定分化,能产生高效率的神经胶质细胞、寡突细胞、神经元细胞,包括多巴胺能神经元、γ氨基丁酸能神经元等,将分化的多巴胺能神经元移植到 Parkinson病模型后,能改善其症状. 细胞治疗的途径有两种:其一,ntES细胞定向分化后移植. 细胞扩增后,体外定向分化,对分化细胞进行纯化,将获得的目的细胞移植到病变部位,替代丧失功能的部分细胞;其二,ntES细胞原位移植. 与定向分化后相比,ntES细胞原位移植有以下缺点:①没有经过纯化,可能将污染的异源饲养层细胞带进移植部位;②ntES细胞没有转入经选择基因,无法控制植入细胞的命运,可能发生癌变;③ntES细胞分化成分复杂,目的细胞分化成分少,可能出现大量非必须细胞的分化.
2.2细胞生物学通过研究ntES细胞的体外分化特性,可以识别某些靶基因,对人类新基因的发现,功能基因的研究,以及基因治疗的研究均有重要意义. 通过探讨ntES细胞体外增殖和分化的机制,了解各种生长和分化因子的作用,为组织再生和修复的研究提供了新的工具;通过诱导ntES细胞癌变,可分析肿瘤细胞发生的分子机制. ntES细胞作为一种得天独厚的研究材料,对于阐明细胞增殖、分化、凋亡、迁徙、恶变等机制有着重要意义. 自发现ES细胞以来,人们已经利用ES细胞建立了多种细胞类型的体外分化系统,体外分化的多种细胞类型都曾被成功的植入胎鼠或成体鼠,在受体鼠体内形成有功能的细胞群.
2.3发育生物学由于哺乳动物在母体内受胚胎发育的个体大小和内环境条件的限制,很难系统地研究其早期的发育进展、细胞分化及调控机制等. 比较动物卵母细胞质对同种或异种细胞核发育的影响,在细胞和分子水平上为研究哺乳动物胚胎早期发育的调控机制提供了良好的材料和方法,也为研究胚胎发育的影响因素提供了便利条件. 建立在ES细胞和基因打靶技术基础上的复杂的转基因系,使人们可以建立有效的分析系统,从而在分子水平上研究不同的生物学问题. 它不仅可以将一些在发育过程中对动物体非必需或可被替代的特定基因进行敲除(gene knockout),在体内进行功能缺失研究,而且还可以研究基因在不同发育时期中的作用. ntES细胞作为一种体外细胞系,提供了一个研究处理整体细胞群的实验体系. 因此,就有可能人为地产生一些基因突变,如对胚胎致死性基因的研究等,也可利用这些突变的基因来克隆产生转基因小鼠,从而建立基因突变的模型.
3治疗性克隆面临的问题
3.1亟待解决的问题①体细胞克隆效率与ntES细胞建系效率普遍较低:核移植胚发育至囊胚的几率为19%~25%,与牛、猪的核移植囊胚发育率相当分别约为25%和26%;从克隆囊胚获得ntES细胞的效率仅有4%~16%,平均8.2%〔11〕. ②卵母细胞来源问题:ntES细胞用于人治疗性克隆,卵母细胞的需求量是非常大的,目前尽管已有许多措施来改进核移植技术,但仍没有明显提高. 要得到一个ntES细胞系平均需要12 个囊胚,而所需要的卵母细胞数就更多了,一个ntES细胞系平均需要666个. 如果ntES细胞系用于人类疾病的治疗,这样的代价是非常大的,即使目前报道的最高效率的建系,也是30个卵母细胞,才能得到一个ntES细胞系. 另外一种替代策略就是利用非灵长类异种哺乳动物的卵母细胞,例如兔、山羊等. ③伦理问题:胚胎生物技术涉及使用早期未着床的胚胎,特别是治疗性克隆技术还将无法避免的使用通过体细胞克隆获得的人的早期克隆胚胎. 世界各国尤其是西方国家对此争论很大〔12,13〕. 迫于社会公众与宗教的压力,大多数西方国家对治疗性克隆技术应用于人类,持反对态度,不允许国家科研经费支持治疗性克隆的研究. ④临床应用问题:如ES细胞系可能在培养过程中出现染色体非整倍性问题,ES细胞定向分化能力及分化细胞的稳定性问题;其次,异种核移植产生的人动物重构胚还存在安全性问题:异种重构胚在发育早期含有2种线粒体,以后供核体的线粒体取代了受体的线粒体,但受体卵浆中所带的异种蛋白,包括细胞器及mRNA,它们的命运如何,是否也像线粒体一样完全被供核体所取代,还有待进一步证明. 再次,在核移植的过程中,可能存在跨种间病毒传染,例如,人兔核移植胚胎干细胞,有可能将某些目前未知的兔疾病传染给人类,就像艾滋病病毒可能是从非洲猩猩而来那样.
3.2建立我国知识产权的治疗性克隆技术随着干细胞技术和体细胞核移植技术的研究进展,我国学者在治疗性克隆的技术方面也处于世界前列. 当前,在我国研究和发展治疗性克隆技术,建立我国知识产权的治疗性克隆的细胞产品,创建细胞治疗产业,是一个很好的机遇. 我国在治疗性克隆研究领域的优势:①目前,我国在哺乳动物克隆技术的研究方面处于国际先进水平,相继成功克隆出了牛、羊等动物. 1991年,西北农林科技大学生物工程研究所在世界上首次获得山羊胚胎细胞核移植成功,共得到5只羔羊. 1998年,该研究小组用来自成年雌性山羊的皮肤成纤维细胞作供体,采用细胞质内直接注射的方法将供体细胞核直接注入去核卵母细胞内,胚胎激活后移植到受体母羊子宫角,获得了2只体细胞核移植后代,这是世界上首批成年体细胞克隆山羊,并获得了克隆山羊的第4代后裔,目前仍生长健康. ②宽松的人文环境. 中国公众有着不同于西方的伦理观念,对于动物权利和早期胚胎的担心没有西方国家严重,也基本没有因为宗教信仰而反对胚胎生物技术的问题. ③法律和法规的基本保证. 为保证和促进人胚胎干细胞研究的健康发展,国家科技部和卫生部联合下发了《人胚胎干细胞研究的伦理指导原则》,使治疗性克隆的研究合法化. 但我国明令禁止克隆人和买卖人类胚胎.
然而,中国的优势不能在治疗性克隆的研究领域走在国际前列,主要原因是经费不足和相关学者缺乏协同研究. 应用克隆技术结合胚胎干细胞体外诱导分化和细胞治疗方法的关键是技术问题. 我们希望临床学者与基础细胞生物学家联手合作,借鉴国外的思路,应用自愿者的卵母细胞,建立中国人的ntES培养技术,为治疗性克隆的临床应用奠定基础. 我们坚信,中国有可能在这个领域走在世界前沿.
【参考文献】
〔1〕 贾战生. 肝病细胞治疗〔M〕. 北京: 人民卫生出版社, 2005:392-412.
〔2〕 Hwang WS, Lee BC, Lee CK, et al. Human embryonic stem cells and therapeutic cloning〔J〕. J Vet Sci,2005;6(2):87-96.
〔3〕 Bjorklund A, Dunnett SB, Brundin P, et al. Neural transplantation for the treatment of Parkinsons disease〔J〕. Lancet Neurol,2003;2(7):437-445.
〔4〕 Segev H, Fishman B, Ziskind A,et al. Differentiation of human embryonic stem cells into insulinprocing clusters〔J〕. Stem Cells,2004;22(3):265-274.
〔5〕 Atala A. Tissue engineering, stem cells and cloning: Current concepts and changing trends〔J〕. Expert Opin Biol Ther,2005;5(7):879-892.
〔6〕 Hwang WS,Ryu YJ,Park JH,et al. Evidence of a pluripotent human embryonic stem cell line derived from a cloned blastocyst〔J〕. Science,2004;303(5664):1669-1674.
〔7〕 Chen Y,He ZX,Liu A,et al. Embryonic stem cells generated by nuclear transfer of human somatic nuclei into rabbit oocytes〔J〕. Cell Res,2003;13(4):251-263.
〔8〕 Hwang WS, Roh SI, Lee BC, et al. Patientspecific embryonic stem cells derived from human SCNT blastocysts〔J〕. Science,2005;308(5729):1777-1783.
〔9〕 Barberi T,Klivenyi P,Calingasan NY,et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in Parkinsonian mice〔J〕. Nat Biotechnol,2003;21(10):1200-1207.
〔10〕 Wakayama T. Cloned mice and embryonic stem cell lines generated from alt somatic cells by nuclear transfer〔J〕. Oncol Res,2003;13(610):309-314.
〔11〕 Mombaerts P. Therapeutic cloning in the mouse〔J〕. Proc Natl Acad Sci USA,2003;100(Suppl 1):11924-11925.
〔12〕 Whittaker PA. Therapeutic cloning: The ethical limits〔J〕. Toxicol Appl Pharmacol,2005; 〔Epub ahead of print〕
〔13〕 Blackford R. Human cloning and ‘posthuman’ society〔J〕. Monash Bioeth Rev,2005; 24(1):10-26.
7、细胞分化的讲义
细胞分化就是由一种相同的细胞类型经过细胞分裂后逐渐在形态、结构和功能上形成稳定性差异,产生不同的细胞类群的过程。 也可以说,细胞分化是同一来源的细胞逐渐发生各自特有的形态结构、生理功能和生化特征的过程。其结果是在空间上细胞之间出现差异,在时间上同一细胞和它以前的状态有所不同。细胞分化是从化学分化到形态、功能分化的过程。 从分子水平看,细胞分化意味着各种细胞内合成了不同的专一蛋白质(如水晶体细胞合成晶体蛋白,红细胞合成血红蛋白,肌细胞合成肌动蛋白和肌球蛋白等),而专一蛋白质的合成是通过细胞内一定基因在一定的时期的选择性表达实现的。因此,基因调控是细胞分化的核心问题。
编辑本段特点
主要可以概括成三点: ①持久性:细胞分化贯穿于生物体整个生命进程中,在胚胎期达到最大程度 ②稳定性和不可逆性:一般来说,分化了的细胞将一直保持分化后的状态,直到死亡 ③普遍性:生物界普遍存在,是生物个体发育的基础 正常情况下,细胞分化是稳定、不可逆的。一旦细胞受到某种刺激发生变化,开始向某一方向分化后,即使引起变化的刺激不再存在,分化仍能进行,并可通过细胞分裂不断继续下去。 但大量科学实验证明,高度分化的植物细胞仍具有发育成完整植株的能力,即细胞的全能性。 胚胎细胞在显示特有的形态结构、生理功能和生化特征之前,需要经历一个称作决定的阶段。在这一阶段中,细胞虽然还没有显示出特定的形态特征,但是内部已经发生了向这一方向分化的特定变化。细胞在整个生命进程中,在胚胎期分化达到最大限度. 细胞决定的早晚,因动物及组织的不同而有差异,但一般情况下都是渐进的过程。例如,在两栖类,把神经胚早期的体节从正常部位移植到同一胚胎的腹部还可改变分化的方向,不形成肌肉而形成肾管及红细胞等。但是到神经胚晚期移植体节,就不能改变体节分化的方向。可见,这时期体节的分化已稳定地决定了。
分化与细胞核
在细胞分化中,细胞核起决定作用。一般认为细胞核内含有该种生物的全套遗传信息。在条件具备时,它可使所在细胞发育分化为由各种类型细胞所组成的完整个体。从培养的烟草,髓部小块形成的组织团块上取脱落的细胞,单个分离培养能得到有根和叶的幼芽,再移植到土壤中,会长出开花的植物。在两栖类,把囊胚期和早期原肠胚的细胞核移植到事先已经去掉细胞核的卵内能使卵正常发育,说明动植物体细胞的核是全能的。
编辑本段分化与细胞质
分化与细胞质之间的关系可以从卵质谈起。如马副蛔虫受精后,所有经过染色体消减的细胞都发育为体细胞(见生殖质)。 许多动物卵子细胞质的分布有明显的区域性。这种区域性虽然不影响染色体的行为,但对于以后胚胎器官发育却有决定性作用。 中国胚胎学家童第周等利用核移植的技术,也证实了卵质在性状发生中的作用。他们把金鱼囊胚期细胞核移到去核的鳑鲏鱼卵子中;虽然发育到幼鱼的例子极少,但是发育的过程都比较正常,一些基本的发育的特点,如胚胎的背腹性,对称性以及早期的卵裂进程等都和鳑鲏鱼一样,幼鱼的体形也和鳑鲏鱼的幼鱼没有区别。这些性状的出现似乎完全根据细胞质。 细胞质对细胞核的作用,还表现在对核功能活动的影响。如培养的人宫颈上皮癌细胞——HeLa细胞——的DNA和RNA合成都很活跃;鸡的红细胞虽然有核,但是处于不活跃状态,不进行DNA合成,RNA合成也很微弱。用细胞融合的方法,使去掉细胞核的HeLa细胞的细胞质和鸡的红细胞融合,便可使后者的细胞核体积增大,浓缩的染色质变得松散,原来已经失去的合成RNA和DNA的功能在寄主HeLa细胞质的影响下,重新恢复了。
编辑本段分化与细胞间的相互作用
细胞间的相互作用是各式各样的,可以是诱导作用,也可以是抑制作用。就作用方式来说,有的作用需要细胞的直接接触,另一些所需要的可能是间隔一定距离的化学物质的扩散。 ①诱导作用。两栖类胚胎背部的外胚层细胞,在脊索中胚层的作用下,分化为神经细胞,以后发育为神经系统。这种中轴器官的诱导作用在脊椎动物具有普遍性,一般认为,脊索中胚层细胞释放某种物质,诱导外胚层细胞分化为神经组织。 诱导不但在中轴器官的形成中起作用,也在以后器官的发生中起作用。例如间质细胞的存在对体内腺体上皮的形成和分化是必不可少的。这些腺体包括甲状腺、胸腺、唾腺和胰腺,它们对间质细胞的依赖程度有很大差异。在离体条件下,胰腺原基只要有间质细胞存在就可以继续发育。 ②抑制作用。如在蝾螈幼虫或成体摘除水晶体后,可以从背部的虹彩再生出一个新的。进一步的分析指出,再生水晶体的能力局限在虹彩背部的边缘层。如把这部分组织移到另一个摘除水晶体的眼睛,不是位于背部,而是使它位于腹部,仍旧可以由它再生出水晶体。 既然这部分细胞有生长水晶体的能力,为什么在正常的眼睛里不表现?如把虹彩的背部移到另一只未摘除水晶体的眼睛里,不管使它位于那一部位,都长不出水晶体。如在摘除水晶体的眼睛里,经常注射完整的(带有水晶体的)眼腔液体,在注射期间,虹彩背部的细胞也长不出水晶体。由此可见,虹彩背部的细胞本来具有产生水晶体的能力,正常水晶体会产生一种物质,对此起抑制作用。 细胞分化中基因表达的调节控制是一个十分复杂的过程,在蛋白质合成的各个水平,从mRNA的转录、加工到翻译,都会有调控的机制。在DNA水平也存在调控机制(如基因的丢失、放大、移位重组、修筛以及染色质结构的变化等)。不同的细胞在其发育中的基因表达的调节控制不同;相同的细胞在其发育的各阶段中,调节控制的机制不同。
编辑本段细胞的分化潜能
一、全能性、多能性和单能性 受精卵能够分化出各种细胞、组织,形成一个完整的个体,所以把受精卵的分化潜能称为全能性。随着分化发育的进程,细胞逐渐丧失其分化潜能。从全能性到多能性,再到单能性,最后失去分化潜能成为成熟定型的细胞。 植物的枝、叶、根都有可能长成一株完整的植株,细胞培养的结果也证明即使高度分化的植物细胞也可以培养成一个完整的植株,因此可以说绝多数植物细胞具有全能性。 成熟动物细胞显然不具备全能性。其原因并非在细胞核而在细胞质,如大量的核移殖实验证实,分化细胞的核仍保留完整的基因组DNA。我国发育生物学家童第周1978年成功地将黑斑蛙成熟的细胞核移入去核的受精卵细胞内,培育出了蝌蚪。60年代的爪蟾和80年代小鼠的核移殖,90年代末多利羊的诞生都证明了分化细胞具有完整的基因组DNA。 在人的一生中,皮肤、小肠和血液等组织需要不断地更新,这个任务是由干细胞完成的。干细胞是一类具有分裂和分化能力的细胞,多能干细胞可以分化出多种类型的细胞,但它不可能分化出足以构成完整个体的所有细胞,所以多能干细胞的分化潜能称为多能性(pluripotent)。单能干细胞来源于多能干细胞,具有向特定细胞系分化的能力,也称为祖细胞(progenitor)。 二、干细胞的特点 干细胞具有以下生物学特点:①终生保持未分化或低分化特征;②在机体的中的数目、位置相对恒定;③具有自我更新能力;④能无限制的分裂增殖;⑤具有多向分化潜能,能分化成不同类型的组织细胞,造血干细胞、骨髓间充质干细胞、神经干细胞等成体干细胞具有一定的跨系、甚至跨胚层分化的潜能;⑥分裂的慢周期性,绝大多数干细胞处于G0期;⑦通过两种方式分裂,对成分裂和不对称分裂前者形成两个相同的干细胞,后者形成一个干细胞和一个祖细胞。 根据干细胞的分化能力,可以分为全能干细胞、多能干细胞和单能干细胞。全能干细胞可以分化为机体内的任何一种细胞,直至形成一个复杂的有机体。多能干细胞可以分化为多种类型的细胞,如造血干细胞可以分化为12种血细胞。 有些文献中将分化潜能更广的细胞叫做多潜能干细胞(pluripotent stem cell),如骨髓间充质干细胞,而把向某一组织类型细胞分化的干细胞叫做多能干细胞(multipotent stem cell),如前面提到的造血干细胞。单能干细胞只能分化为一种类型的细胞,而且自我更新能力有限。 三、胚胎干细胞 根据个体发育过程中出现的先后次序不同,干细胞又可分为胚胎干细胞和成体干细胞。胚胎干细胞(embryonic stem cells,ESC)是指从胚胎内细胞团或原始生殖细胞筛选分离出的具有多能性或全能性的细胞,此外也可以通过体细胞核移植技术获得。ESC能表达POU家族的转录因子Oct-3/4;在移植后能形成的畸胎瘤,在体外适当条件下能分化为代表三胚层结构的体细胞。 ESC的用途主要有:①克隆动物,由体细胞作为核供体进行克隆动物生产,虽然易于取材,但克隆动物个体中表现出严重的生理或免疫缺陷,而且多为致命性的;②转基因动物,以ESC细胞作为载体,可大大加快转基因动物生产的速度,提高成功率;③组织工程,人工诱导ESC定向分化,培育出特定的组织和器官,用于医学治疗的目的。 四、再生 狭义地讲再生指生物的器官损伤后,剩余的部分长出与原来形态功能相同的结构的现象称为再生,如壁虎的尾、蝾螈的肢、螃蟹的足,在失去后又可重新形成,海参可以形成全部内脏,水螅、蚯蚓、蜗虫等低等动物的每一段都可以形成一个完整的个体等等。但是从广义的角度来看再生是生命的普遍现象,从分子、细胞到组织器官都具有再生现象。 再生的形式: 生理性再生:即细胞更新,如人体内每秒中约有600万个新生的红细胞替代相同数量死亡的红细胞。 修复性再生:许多无脊椎动物用这种方式来形成失去的器官,如上述提到的壁虎的尾和螃蟹的肢。 重建:是人工实验条件下的特殊现象。如人为将水螅的一片组织分散成单个细胞。在悬液中,这些细胞重新聚集,在几天至几周以后,形成一条新的水螅。 无性繁殖: 关于再生存在着许多引人入胜的问题: 1.机体如何意识到失去的部分,又是如何知道丢失的部位及丢失的多少?即再生如何起始,如何控制? 2.替代物来此何处?是剩余的原胚细胞、干细胞还是已分化的细胞又去分化的结果? 3.原结构的重建是补充的新组织,还是由伤口处一些细胞增殖代替了缺失的结构。 现在普遍认为再生是细胞去分化,细胞迁移和细胞增殖的组合,而不是单纯的补充或增殖。如蝾螈的前肢被切除后,再生包括以下的过程:①伤口处细胞的粘着性减弱,通过变形运动移向伤口。形成单层细胞封闭伤口。这层细胞称为顶帽(apical cap)或顶外胚层帽(apical ectodermal cap)。②顶帽下方的细胞,如骨细胞,软骨细胞,成纤维细胞,肌细胞,神经胶质细胞迅速去分化。形成胚芽。③胚芽内部缺氧,PH下降,提高了溶酶体的活性,促进受伤组织的清除。④胚芽细胞加快分裂和生长,最后细胞又开始分化构成一个新的肢体。 从蝾螈断肢再生的实验发现,①当臂神经被完全切除时不再发生断肢再生。这是因为神经能产生再生促进因子,其中有一种被鉴定为神经胶质生长因子(glial growth factor,GGF)。②利用视黄酸处理前臂断肢芽基,肢干将忽略已存在的肱骨、桡骨、尺骨,而形成一只从肱骨到指骨的完整手臂。说明视黄酸能干扰正常的位置信息,现在认为位置信息与同源异形基因的表达有关。
8、免疫组化鉴定骨髓间充质干细胞买什么试剂盒
单靠免疫组化的方法是不能定量,定性的。
Bone Mesenchymal Stem Cells 作为一个细胞群体,还没有发现有特定细胞表面marker. 对于那些可以代表自我更新和分化的marker, 也不清楚到底要发现哪一个的表达才能确定该细胞就是BMSC。
目前常用的方法,就是采用培养,colony-forming unit-fibroblasts (CFU-F)这个方法。一般BMSC可以24-48小时贴壁。
流式细胞计数,比如STRO-1,但是一般认为STRO-1阳性的细胞更趋向于造血干细胞,和BMSC简单区别还不是很清楚。
这里有个培养分化的产品
http://www.rndsystems.com/pdf/SC020.pdf
9、细胞分化与愈伤组织的关系
在无菌条件下,将植物器官或组织(如芽、茎尖、根尖或花药)的一部分切下来,放在适当的人工培养基上进行培养,这些器官或组织就会进行细胞分裂,形成新的组织。不过这种组织没有发生分化,只是一团薄壁细胞,叫做愈伤组织。再适合的光照、温度和一定的营养物质与激素等条件下,愈伤组织便开始分化,产生出植物的各种器官和组织,进而发育成一棵完整的植株。
愈伤组织(callus)原指植物体的局部受到创伤刺激后,在伤口表面新生的组织。它由活的薄壁细胞组成,可起源于植物体任何器官内各种组织的活细胞。在植物体的创伤部分,愈伤组织可帮助伤口愈合;在嫁接中,可促使砧木与接穗愈合,并由新生的维管组织使砧木和接穗沟通;在扦插中,从伤口愈伤组织可分化出不定根或不定芽,迸而形成完整植株。在植物器官、组织、细胞离体培养时,条件适宜也可以长出愈伤组织。其发生过程是:外植体中的活细胞经诱导,恢复其潜在的全能性,转变为分生细胞,继而其衍生的细胞分化为薄壁组织而形成愈伤组织。从植物器官、组织、细胞离体培养所产生的愈伤组织,在一定条件下可进一步诱导器官再生或胚状体而形成植株。在单倍体育种中,也可由花粉产生的愈伤组织或胚状体分化成单倍体植株。甚至可由原生质体培养诱导植株或器官再生。故愈伤组织的概念已不局限于植物体创伤部分的新生组织了。
在植物的组织培养中,从一块外植体形成典型的愈伤组织,大致要经历三个时期:启动期、分裂期和形成期。启动期指细胞准备进行分裂的时期。外源植物生长激素对诱导细胞开始分裂效果很好。常用的有萘乙酸、吲哚乙酸、细胞分裂素等。通常使用细胞分裂素和生长素比例在1:l来诱导植物材料愈伤组织的形成。分裂期是指外植体细胞经过诱导以后脱分化,不断分裂、增生子细胞的过程。分裂期愈伤组织的特点是:细胞分裂快,结构疏松,颜色浅而透明。分化期是指在分裂的末期,细胞内开始出现一系列形态和生理上的变化,从而使愈伤组织内产生不同形态和功能的细胞。这些细胞类型有薄壁细胞、分生细胞、色素细胞、纤维细胞等等。外植体的细胞经过启动、分裂和分化等一系列变化,形成了无序结构的愈伤组织。如果在原来的培养基上继续培养愈伤组织,会由于培养基中营养不足或有毒代谢物的积累,导致愈伤组织停止生长,甚至老化变黑、死亡。如果要让愈伤组织继续生长增殖,必须定期地(2~4个星期)将它们分成小块“接种到新鲜的培养基上,这样愈伤组织就可以长期保持旺盛的生长。
一、全能性、多能性和单能性
受精卵能够分化出各种细胞、组织,形成一个完整的个体,所以把受精卵的分化潜能称为全能性。随着分化发育的进程,细胞逐渐丧失其分化潜能。从全能性到多能性,再到单能性,最后失去分化潜能成为成熟定型的细胞。
植物的枝、叶、根都有可能长成一株完整的植株,细胞培养的结果也证明即使高度分化的植物细胞也可以培养成一个完整的植株,因此可以说绝多数植物细胞具有全能性。
成熟动物细胞显然不具备全能性。其原因并非在细胞核而在细胞质,如大量的核移殖实验证实,分化细胞的核仍保留完整的基因组DNA。我国发育生物学家童第周1978年成功地将黑斑蛙成熟的细胞核移入去核的受精卵细胞内,培育出了蝌蚪。60年代的爪蟾和80年代小鼠的核移殖,90年代末多利羊的诞生都证明了分化细胞具有完整的基因组DNA。
在人的一生中,皮肤、小肠和血液等组织需要不断地更新,这个任务是由干细胞完成的。干细胞是一类具有分裂和分化能力的细胞,多能干细胞可以分化出多种类型的细胞,但它不可能分化出足以构成完整个体的所有细胞,所以多能干细胞的分化潜能称为多能性(pluripotent)。单能干细胞来源于多能干细胞,具有向特定细胞系分化的能力,也称为祖细胞(progenitor)。
二、干细胞的特点
干细胞具有以下生物学特点:①终生保持未分化或低分化特征;②在机体的中的数目、位置相对恒定;③具有自我更新能力;④能无限制的分裂增殖;⑤具有多向分化潜能,能分化成不同类型的组织细胞,造血干细胞、骨髓间充质干细胞、神经干细胞等成体干细胞具有一定的跨系、甚至跨胚层分化的潜能;⑥分裂的慢周期性,绝大多数干细胞处于G0期;⑦通过两种方式分裂,对成分裂和不对称分裂前者形成两个相同的干细胞,后者形成一个干细胞和一个祖细胞。
根据干细胞的分化能力,可以分为全能干细胞、多能干细胞和单能干细胞。全能干细胞可以分化为机体内的任何一种细胞,直至形成一个复杂的有机体。多能干细胞可以分化为多种类型的细胞,如造血干细胞可以分化为12种血细胞。
有些文献中将分化潜能更广的细胞叫做多潜能干细胞(pluripotent stem cell),如骨髓间充质干细胞,而把向某一组织类型细胞分化的干细胞叫做多能干细胞(multipotent stem cell),如前面提到的造血干细胞。单能干细胞只能分化为一种类型的细胞,而且自我更新能力有限。
三、胚胎干细胞
根据个体发育过程中出现的先后次序不同,干细胞又可分为胚胎干细胞和成体干细胞。胚胎干细胞(embryonic stem cells,ESC)是指从胚胎内细胞团或原始生殖细胞筛选分离出的具有多能性或全能性的细胞,此外也可以通过体细胞核移植技术获得。ESC能表达POU家族的转录因子Oct-3/4;在移植后能形成的畸胎瘤,在体外适当条件下能分化为代表三胚层结构的体细胞。
ESC的用途主要有:①克隆动物,由体细胞作为核供体进行克隆动物生产,虽然易于取材,但克隆动物个体中表现出严重的生理或免疫缺陷,而且多为致命性的;②转基因动物,以ESC细胞作为载体,可大大加快转基因动物生产的速度,提高成功率;③组织工程,人工诱导ESC定向分化,培育出特定的组织和器官,用于医学治疗的目的。
四、再生
狭义地讲再生指生物的器官损伤后,剩余的部分长出与原来形态功能相同的结构的现象称为再生,如壁虎的尾、蝾螈的肢、螃蟹的足,在失去后又可重新形成,海参可以形成全部内脏,水螅、蚯蚓、蜗虫等低等动物的每一段都可以形成一个完整的个体等等。但是从广义的角度来看再生是生命的普遍现象,从分子、细胞到组织器官都具有再生现象。
再生的形式:
生理性再生:即细胞更新,如人体内每秒中约有600万个新生的红细胞替代相同数量死亡的红细胞。
修复性再生:许多无脊椎动物用这种方式来形成失去的器官,如上述提到的壁虎的尾和螃蟹的肢。
重建:是人工实验条件下的特殊现象。如人为将水螅的一片组织分散成单个细胞。在悬液中,这些细胞重新聚集,在几天至几周以后,形成一条新的水螅。
无性繁殖:
关于再生存在着许多引人入胜的问题:
1.机体如何意识到失去的部分,又是如何知道丢失的部位及丢失的多少?即再生如何起始,如何控制?
2.替代物来此何处?是剩余的原胚细胞、干细胞还是已分化的细胞又去分化的结果?
3.原结构的重建是补充的新组织,还是由伤口处一些细胞增殖代替了缺失的结构。
现在普遍认为再生是细胞去分化,细胞迁移和细胞增殖的组合,而不是单纯的补充或增殖。如蝾螈的前肢被切除后,再生包括以下的过程:①伤口处细胞的粘着性减弱,通过变形运动移向伤口。形成单层细胞封闭伤口。这层细胞称为顶帽(apical cap)或顶外胚层帽(apical ectodermal cap)。②顶帽下方的细胞,如骨细胞,软骨细胞,成纤维细胞,肌细胞,神经胶质细胞迅速去分化。形成胚芽。③胚芽内部缺氧,PH下降,提高了溶酶体的活性,促进受伤组织的清除。④胚芽细胞加快分裂和生长,最后细胞又开始分化构成一个新的肢体。
从蝾螈断肢再生的实验发现,①当臂神经被完全切除时不再发生断肢再生。这是因为神经能产生再生促进因子,其中有一种被鉴定为神经胶质生长因子(glial growth factor,GGF)。②利用视黄酸处理前臂断肢芽基,肢干将忽略已存在的肱骨、桡骨、尺骨,而形成一只从肱骨到指骨的完整手臂。说明视黄酸能干扰正常的位置信息,现在认为位置信息与同源异形基因的表达有关。
那就是说细胞分化程度越大,但只要经过适当的环境和条件刺激,能分化成不同类型的组织细胞,仍具有多向分化潜能,细胞分化程度与愈伤组织没有必然的联系,不一定全能性就较差,仍具备分化一棵完整的植株潜能