1、CT中的圖像和真人的是一樣大的嗎
英文全稱:computed tomography CT是一種功能齊全的病情探測儀器,它是電子計算機X射線斷層掃描技術簡稱。
CT圖像特點
CT圖像是由一定數目由黑到白不同灰度的象素按矩陣排列所構成。這些象素反映的是相應體素的X線吸收系數。不同CT裝置所得圖像的象素大小及數目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;數目可以是256×256,即65536個,或512×512,即262144個不等。顯然,象素越小,數目越多,構成圖像越細致,即空間分辨力(spatial resolution)高。CT圖像的空間分辨力不如X線圖像高。 CT圖像是以不同的灰度來表示,反映器官和組織對X線的吸收程度。因此,與X線圖像所示的黑白影像一樣,黑影表示低吸收區,即低密度區,如含氣體多的肺部;白影表示高吸收區,即高密度區,如骨骼。但是CT與X線圖像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人體軟組織的密度差別雖小,吸收系數雖多接近於水,也能形成對比而成像。這是CT的突出優點。所以,CT可以更好地顯示由軟組織構成的器官,如腦、脊髓、縱隔、肺、肝、膽、胰以及盆部器官等,並在良好的解剖圖像背景上顯示出病變的影像。 x線圖像可反映正常與病變組織的密度,如高密度和低密度,但沒有量的概念。CT圖像不僅以不同灰度顯示其密度的高低,還可用組織對X線的吸收系數說明其密度高低的程度,具有一個量的概念。實際工作中,不用吸收系數,而換算成CT值,用CT值說明密度。單位為Hu(Hounsfield unit)。 水的吸收系數為10,CT值定為0Hu,人體中密度最高的骨皮質吸收系數最高,CT值 CT圖像1
定為+1000Hu,而空氣密度最低,定為-1000Hu。人體中密度不同和各種組織的CT值則居於-1000Hu到+1000Hu的2000個分度之間。 CT圖像是層面圖像,常用的是橫斷面。為了顯示整個器官,需要多個連續的層面圖像。通過CT設備上圖像的重建程序的使用,還可重建冠狀面和矢狀面的層面圖像,可以多角度查看器官和病變的關系。
2、ct值正常值是多少
水的CT值是0
骨的CT值是1000
空氣的CT值是 -1000
血液的CT值是60-80
軟組織、肌肉的CT值是30-60
脂肪的CT值是 -30到-120
3、X光、CT、核磁共振三者各自的功能是什麼?各自側重點和優點分別是什麼?
X光具有穿透性,對不同密度的物質有不同的穿透能力。在醫學上X光用來投射人體器官及骨骼形成影象,用來輔助診斷。
B超它以強度低、頻率高、對人體無損傷、無痛苦、顯示方法多樣而著稱,尤其對人體軟組織的探測和心血管臟器的血流動力學觀察有其獨到之處。
CT圖像是以不同的灰度來表示,反映器官和組織對X線的吸收程度。因此,與X線圖像所示的黑白影像一樣,黑影表示低吸收區,即低密度區,如含氣體多的肺部;白影表示高吸收區,即高密度區,如骨骼。但是CT與X線圖像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人體軟組織的密度差別雖小,吸收系數雖多接近於水,也能形成對比而成像。這是CT的突出優點。所以,CT可以更好地顯示由軟組織構成的器官,如腦、脊髓、縱隔、肺、肝、膽、胰以及盆部器官等,並在良好的解剖圖像背景上顯示出病變的影像。x線圖像可反映正常與病變組織的密度,如高密度和低密度,但沒有量的概念。CT圖像不僅以不同灰度顯示其密度的高低,還可用組織對X線的吸收系數說明其密度高低的程度,具有一個量的概念。實際工作中,不用吸收系數,而換算成CT值,用CT值說明密度。單位為Hu(Hounsfield unit)。水的吸收系數為10,CT值定為0Hu,人體中密度最高的骨皮質吸收系數最高,CT值定為+1000Hu,而空氣密度最低,定為-1000Hu。人體中密度不同和各種組織的CT值則居於-1000Hu到+1000Hu的2000個分度之間。CT圖像是層面圖像,常用的是橫斷面。為了顯示整個器官,需要多個連續的層面圖像。通過CT設備上圖像的重建程序的使用,還可重建冠狀面和矢狀面的層面圖像,可以多角度查看器官和病變的關系。
核磁共振(MRI)又叫核磁共振成像技術。是繼CT後醫學影像學的又一重大進步。自80年代應用以來,它以極快的速度得到發展。其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MRI)。
MRI是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。
MRI提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MRI對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。
MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。
4、CT值7-32HU是什麼意思
HU——豪斯菲爾德,是ct值的單位。它的大小反應了組織的密度,一般ct值越高,密度越高。7-32hu,指的是ct值的范圍在7~32之間,符合軟組織密度的ct值。
CT 值是CT 圖像中各組織與X 線衰減系數相當的對應值。無論是矩陣圖像或矩陣數字都是CT 值的代表,而CT 值又是從人體組織、器官的μ值換算而來的。
CT 值不是絕對不變的數值,它不僅與人體內在因素如呼吸、血流等有關,而且與X 線管電壓、CT 裝置、室內溫度等外界因素有關,應經常校正,否則將導致誤診。
(4)人體軟組織的CT值與水相近嗎擴展資料
常見介質的CT值:
水的CT值是0
骨的CT值是1000
空氣的CT值是 -1000
血液的CT值是60-80
軟組織、肌肉的CT值是30-60
脂肪的CT值是 -30到-120
5、影像學的X線檢查
X線圖像是由從黑到白不同灰度的影像所組成。這些不同灰度的影像反映了人體組織結構的解剖及病理狀態。這就是賴以進行X線檢查的自然對比。對於缺乏自然對比的組織或器官,可人為地引入一定量的在密度上高於或低於它的物質,便產生人工對比。因此,自然對比和人工對比是X線檢查的基礎。 包括熒光透視和攝影。
熒光透視(fluoroscopy):簡稱透視。為常用X線檢查方法。由於熒光亮度較低,因此透視一般須在暗室內進行。透視前須對視力行暗適應。採用影像增強電視系統,影像亮度明顯增強,效果更好。透視的主要優點是可轉動患者體位,改變方向進行觀察;了解器官的動態變化,如心、大血管搏動、膈運動及胃腸蠕動等;透視的設備簡單,操作方便,費用較低,可立即得出結論等。主要缺點是熒屏亮度較低,影像對比度及清晰度較差,難於觀察密度與厚度差別較少的器官以及密度與厚度較大的部位。例如頭顱、腹部、脊柱、骨盆等部位均不適宜透視。另外,缺乏客觀記錄也是一個重要缺點。
X線攝影(radiography):所得照片常稱平片(plainfilm)。這是應用最廣泛的檢查方法。優點是成像清晰,對比度及清晰度均較好;不難使密度、厚度較大或密度、厚度差異較小部位的病變顯影;可作為客觀記錄,便於復查時對照和會診。缺點是每一照片僅是一個方位和一瞬間的X線影像,為建立立體概念,常需作互相垂直的兩個方位攝影,例如正位及側位;對功能方面的觀察,不及透視方便和直接;費用比透視稍高。
這兩種方法各具優缺點,互相配合,取長補短,可提高診斷的正確性。 體層攝影(tomography):普通X線片是X線投照路徑上所有影像重疊在一起的總和投影。一部分影像因與其前、後影像重疊,而不能顯示。體層攝影則可通過特殊的裝置和操作獲得某一選定層面上組織結構的影像,而不屬於選定層面的結構則在投影過程中被模糊掉。其原理如圖1-1-6所示。體層攝影常用以明確平片難於顯示、重疊較多和處於較深部位的病變。多用於了解病變內部結構有無破壞、空洞或鈣化,邊緣是否銳利以及病變的確切部位和范圍;顯示氣管、支氣管腔有無狹窄、堵塞或擴張;配合造影檢查以觀察選定層面的結構與病變。
軟線攝影:採用能發射軟X線的鉬靶管球,用以檢查軟組織,特別是乳腺的檢查。
其他:特殊檢查方法尚有①放大攝影,採用微焦點和增大人體與照片距離以顯示較細微的病變;②熒光攝影,熒光成像基礎上進行縮微攝片,主要用於集體體檢;③記波攝影,採用特殊裝置以波形的方式記錄心、大血管搏動,膈運動和胃腸蠕動等。
在曝光時,X線管與膠片作相反方向移動,而移動的軸心即在選定層面的平面上。結果,在被檢查的部位內,只有選定的一層結構始終投影在膠片上的固定位置(A'),從而使該層面的結構清楚的顯影,而其前後各層結構則因曝光時,在膠片上投影的位置不斷移動而成模糊影像(B') 人體組織結構中,有相當一部分,只依靠它們本身的密度與厚度差異不能在普通檢查中顯示。此時,可以將高於或低於該組織結構的物質引入器官內或周圍間隙,使之產生對比以顯影,此即造影檢查。引入的物質稱為造影劑(contrastmedia)。造影檢查的應用,顯著擴大了X線檢查的范圍。
(一)造影劑 按密度高低分為高密度造影和低密度造影劑兩類。
1.高密度造影劑 為原子序數高、比重大的物質。常用的有鋇劑和碘劑。
鋇劑為醫用硫酸鋇粉末,加水和膠配成。根據檢查部位及目的,按粉末微粒大小、均勻性以及用水和膠的量配成不同類型的鋇混懸液,通常以重量/體積比來表示濃度。硫酸鋇混懸液主要用於食管及胃腸造影,並可採用鋇氣雙重對比檢查,以提高診斷質量。
碘劑種類繁多,應用很廣,分有機碘和無機碘制劑兩類。
有機碘水劑類造影劑注入血管內以顯示器官和大血管,已有數十年歷史,且成為常規方法。它主要經肝或腎從膽道或泌尿道排出,因而廣泛用於膽管及膽囊、腎盂及尿路、動脈及靜脈的造影以及作CT增強檢查等。70年代以前均採用離子型造影劑。這類高滲性離子型造影劑,可引起血管內液體增多和血管擴張,肺靜脈壓升高,血管內皮損傷及神經毒性較大等缺點,使用中可出現毒副反應。70年代開發出非離子型造影劑,它具有相對低滲性、低粘度、低毒性等優點,大大降低了毒副反應,適用於血管、神經系統及造影增強CT掃描。惜費用較高,尚難於普遍使用。
上述水溶性碘造影劑有以下類型:①離子型,以泛影葡胺(urografin)為代表;②非離子型以碘苯六醇(iohexol)、碘普羅胺(iopromide)碘必樂(iopamidol)為代表;③非離子型二聚體,以碘曲侖(iotrolan)為代表。
無機制碘劑當中,布希化油(lipoidol)含碘40%,常用於支氣管、瘺管子官輸入卵管造影等。碘化油造影後吸收極慢,故造影完畢應盡可能吸出。
脂肪酸碘化物的碘苯酯(pantopaque),可注入椎管內作脊髓造影,但現已用非離子型二聚體碘水劑。
2.低密度造影劑 為原子序數低、比重小的物質。應用於臨床的有二氧化碳、氧氣、空氣等。在人體內二氧化碳吸收最快,空氣吸收最慢。空氣與氧氣均不能注入正在出血的器官,以免發生氣栓。可用於蛛網膜下腔、關節囊、腹腔、胸腔及軟組織間隙的造影。
(二)造影方式 有以下兩種方式。
1.直接引入 包括以下幾種方式;①口服法:食管及胃腸鋇餐檢查;②灌注法:鋇劑灌腸,支氣管造影,逆行膽道造影,逆行泌尿道造影,瘺管、膿腔造影及子宮輸卵管造影等;③穿剌注入法:可直接或經導管注入器官或組織內,如心血管造影,關節造影和脊髓造影等。
2.間接引入 造影劑先被引入某一特定組織或器官內,後經吸收並聚集於欲造影的某一器官內,從而使之顯影。包括吸收性與排泄性兩類。吸收性如淋巴管造影。排泄性如靜脈膽道造影或靜脈腎盂造影和口服法膽襄造影等。前二者是經靜脈注入造影劑後,造影劑聚集於肝、腎,再排泄入膽管或泌尿道內。後者是口服造影劑後,造影劑經腸道吸收進入血循環,再到肝膽並排入膽襄內,即在蓄積過程中攝影,現已少用。
(三)檢查前准備造影反應的處理 各種造影檢查都有相應的檢查前准備和注意事項。必須嚴格執行,認真准備,以保證檢查效果和患者的安全。應備好搶救葯品和器械,以備急需。
在造影劑中,鋇劑較安全,氣體造影時應防止氣栓的發生。靜脈內氣栓發生後應立即將患者置於左側卧位,以免氣體進入肺動脈。造影反應中,以碘造影劑過敏較常見並較嚴重。在選用碘造影劑行造影時,以下幾點值得注意:①了解患者有無造影的禁忌證,如嚴重心、腎疾病和過敏體質等;②作好解釋工作,爭取患者合作;③造影劑過敏試驗,一般用1ml30%的造影劑靜脈注射,觀察15分鍾,如出現胸悶、咳嗽、氣促、惡心、嘔吐和蕁麻疹等,則為陽性,不宜造影檢查。但應指出,盡管無上述症狀,造影中也可發生反應。因此,關鍵在於應有搶救過敏反應的准備與能力;④作好搶救准備,嚴重反應包括周圍循環衰竭和心臟停搏、驚厥、喉水腫、肺水腫和哮喘發作等。遇此情況,應立即終止造影並進行抗休克、抗過敏和對症治療。呼吸困難應給氧,周圍循環衰竭應給去甲腎上腺素,心臟停搏則需立即進行心臟按摩。 CT圖像是由一定數目由黑到白不同灰度的象素按矩陣排列所構成。這些象素反映的是相應體素的X線吸收系數。不同CT裝置所得圖像的象素大小及數目不同。大小可以是1.0×1.0mm,0.5×0.5mm不等;數目可以是256×256,即65536個,或512×512,即262144個不等。顯然,象素越小,數目越多,構成圖像越細致,即空間分辨力(spatialresolution)高。CT圖像的空間分辨力不如X線圖像高。
CT圖像是以不同的灰度來表示,反映器官和組織對X線的吸收程度。因此,與X線圖像所示的黑白影像一樣,黑影表示低吸收區,即低密度區,如肺部;白影表示高吸收區,即高密度區,如骨骼。但是CT與X線圖像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人體軟組織的密度差別雖小,吸收系數雖多接近於水,也能形成對比而成像。這是CT的突出優點。所以,CT可以更好地顯示由軟組織構成的器官,如腦、脊髓、縱隔、肺、肝、膽、胰以及盆部器官等,並在良好的解剖圖像背景上顯示出病變的影像。
x 線圖像可反映正常與病變組織的密度,如高密度和低密度,但沒有量的概念。CT圖像不僅以不同灰度顯示其密度的高低,還可用組織對X線的吸收系數說明其密度高低的程度,具有一個量的概念。實際工作中,不用吸收系數,而換算成CT值,用CT值說明密度。單位為Hu(Hounsfield unit)。
水的吸收系數為10,CT值定為0Hu,人體中密度最高的骨皮質吸收系數最高,CT值定為+1000Hu,而空氣密度最低,定為-1000Hu。人體中密度不同和各種組織的CT值則居於-1000Hu到+1000Hu的2000個分度之間
由右上圖可見人體軟組織的CT值多與水相近,但由於CT有高的密度分辨力,所以密度差別雖小,也可形成對比而顯影。
CT值的使用,使在描述某一組織影像的密度時,不僅可用高密度或低密度形容,且可用它們的CT值平說明密度高低的程度。
CT圖像是層面圖像,常用的是橫斷面。為了顯示整個器官,需要多個連續的層面圖像。通過CT設備上圖像的重建程序的使用,還可重建冠狀面和矢狀面的層面圖像。
6、x光.b超.ct.核磁共振分別有什麼用
X光具有穿透性,對不同密度的物質有不同的穿透能力。在醫學上X光用來投射人體器官及骨骼形成影象,用來輔助診斷。B超它以強度低、頻率高、對人體無損傷、無痛苦、顯示方法多樣而著稱,尤其對人體軟組織的探測和心血管臟器的血流動力學觀察有其獨到之處。CT圖像是以不同的灰度來表示,反映器官和組織對X線的吸收程度。因此,與X線圖像所示的黑白影像一樣,黑影表示低吸收區,即低密度區,如含氣體多的肺部;白影表示高吸收區,即高密度區,如骨骼。但是CT與X線圖像相比,CT的密度分辨力高,即有高的密度分辨力(density resolutiln)。因此,人體軟組織的密度差別雖小,吸收系數雖多接近於水,也能形成對比而成像。這是CT的突出優點。所以,CT可以更好地顯示由軟組織構成的器官,如腦、脊髓、縱隔、肺、肝、膽、胰以及盆部器官等,並在良好的解剖圖像背景上顯示出病變的影像。x線圖像可反映正常與病變組織的密度,如高密度和低密度,但沒有量的概念。CT圖像不僅以不同灰度顯示其密度的高低,還可用組織對X線的吸收系數說明其密度高低的程度,具有一個量的概念。實際工作中,不用吸收系數,而換算成CT值,用CT值說明密度。單位為Hu(Hounsfield unit)。水的吸收系數為10,CT值定為0Hu,人體中密度最高的骨皮質吸收系數最高,CT值定為+1000Hu,而空氣密度最低,定為-1000Hu。人體中密度不同和各種組織的CT值則居於-1000Hu到+1000Hu的2000個分度之間。CT圖像是層面圖像,常用的是橫斷面。為了顯示整個器官,需要多個連續的層面圖像。通過CT設備上圖像的重建程序的使用,還可重建冠狀面和矢狀面的層面圖像,可以多角度查看器官和病變的關系。 核磁共振(MRI)又叫核磁共振成像技術。是繼CT後醫學影像學的又一重大進步。自80年代應用以來,它以極快的速度得到發展。其基本原理:是將人體置於特殊的磁場中,用無線電射頻脈沖激發人體內氫原子核,引起氫原子核共振,並吸收能量。在停止射頻脈沖後,氫原子核按特定頻率發出射電信號,並將吸收的能量釋放出來,被體外的接受器收錄,經電子計算機處理獲得圖像,這就叫做核磁共振成像。
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MRI)。
MRI是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。
MRI提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MRI對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。
MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。
7、胸部CT報告中HU表示什麼,平掃CT值約25HU,增強掃描明顯強化CT值約85HU表示有多大
HU表示軟抄組織密度。
Hu,用來表示CT圖像上組織結構的相對密度,水的CT值是0亨氏單位。簡單說,物質的CT值越高相當於物質密度越高。
其中μ為吸收系數或衰減系數。人體組織的μ是不均勻的,但如果將人體均勻分解成許多足夠小的方塊,每個小塊組織(稱為體素)的μ可以看作是均勻的。
(7)人體軟組織的CT值與水相近嗎擴展資料:
工作方式:
輸入電子計算機。不斷改變投射角度,可以得到數萬到數十萬個數據。電子計算機對這些數據按照一定演算法進行計算,就可求得所掃描層面上的每一個體素的μ,通過數-模轉換器,即可重建出該層面的圖像。
圖像上每個像素都有一定的μ值,用不同的灰度表示,μ代表組織的密度,在CT上稱CT值。某一組織的CT值,是其μ值與水的μ值相比得出的。
8、CT中的術語
如果你是影像學學生的話,我建議你看課本,如果不是的話我可以解釋給你聽。
CT值 CT值代表X線穿過組織被吸收後的衰減值。每種物質的CT值等於該物質的衰減系數與水的衰減系數之差再與水的衰減系數相比之後乘以1000,即某物質CT值=1000×(u—u水)/ u水,,其單位名稱為HU(Hounsfield Unit),可見CT值不是一個絕對值,而是一個相對值。不同組織的CT值各異,各自在一定范圍內波動。骨骼的CT值最高,為1000HU,軟組織的CT值為20~70HU,水的CT值為0(±10)HU,脂肪的CT值為-50~-100以下,空氣的CT值為-1000HU。人體組織的CT值范圍從空氣的-1000HU到骨的+1000HU,共有2000個CT值。
窗寬(WW)與窗位(WL) 人體組織在CT上能分辨出2000個不同的灰度,層次甚多,而人的眼睛不能分辨出如此微小的灰度差別,一般只能分辨出16個灰度。為此CT機在設計上將密度最高的白色到密度最低的黑色分為16個灰階。人體組織的2000個CT值若用16個灰階來反映,則人眼所能分辨的CT值應為2000/16=125HU,即兩種組織的CT值只有相差在125HU以上時肉眼才能分辨出來,若相差不足125HU則無法分辨清楚。而人體軟組織的CT值多數在+20~+70HU之間,相差不足125HU。為了提高組織結構細節的顯示,使CT值差別小的兩種組織能分辨,可採用不同的窗寬與窗位進行調整。
窗寬 是指CT圖像上所包含的CT值范圍。在此CT值范圍內的組織結構按其密度高低從白到黑分為16個灰階供觀察對比。例如:窗寬選定為80HU,則其可分辨的CT值為80/16=5HU,即兩種組織CT值的差別在5HU以上即可分辨出來。因此窗寬的 寬窄直接影響到圖像的對比度和清晰度。
窗位或稱窗中心 由於不同組織的CT值不同,要想觀察它的細微結構,最好以該組織的CT值為窗位。窗位是指窗寬上下限的平均數。
空間解析度 是指對物體結構大小(幾何尺寸)的鑒別能力,通常用每厘米內的線對數(LP/cm)或用可辨別最小物體的直經(mm)來表示,它與構成圖像的像數有關,像數小而多,則空間解析度就大,圖像細致清楚。構成CT圖像的像數不可能像X線照片的銀粒那麼細小而多,所以CT的空間解析度較普通的X線照片要小。
CT影像顯示技術又稱窗口技術,即正確的選擇和應用窗寬、窗位,來獲得清晰的圖像,使病變部位明顯的顯示出來
9、人體組織正常CT值是什麼?
空氣-1000Hu脂肪-50--90Hu水-20-+25Hu軟組織20-60Hu血液(新鮮)20-60Hu陳歸血液60-80Hu凝血塊60-80Hu骨與鈣化80-1000Hu腦白質C-25-34HuC+25-34Hu灰質C-30-40HuC+32-43Hu肺-500--700Hu肝C-40-70HuC+60-90Hu脾C-50-70HuC+60-90Hu胰C-40-60HuC+50-70Hu腎C-20-60HuC+60-120Hu子宮體40-80Hu膀胱(充盈尿液)5-15Hu眼球:環16-48Hu玻璃體-12-+18Hu視神經13-45Hu晶體76-101Hu肌肉C-35-50HuC+50-70Hu