1、體內有鈦板鈦釘,能做核磁檢查嗎
核磁共振的磁場會對附近的金屬物質產生極強的吸力,會導致手錶無線電等物品損壞,因此在工作范圍內不允許有金屬物質存在,除非緊急搶救情況下,不會讓體內有金屬植入物的患者進行磁共振檢查,你那名醫生的說法欠妥,醫用鈦合金對人體基本無害。
2、如果骨折後,做完手術了身體里留下鈦合金內固定板,和鈦合金鋼釘以後還可不可以做核磁共振
核磁共振,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。也就是說,核磁共振不同於CT,X光,和放射成像,它不帶有放射性,僅僅是依靠一定強度的磁場,激發物體內部原子自旋軸保持一致,而產生一個自旋脈沖,再通過這個脈沖信號來產生需要的圖像。
而如果非要深究它給人體所帶來的傷害,主要是強力磁場可以引起金屬的位移,例如眼睛和腦中的金屬碎片,在磁場的作用下可以導致腦損傷和失明,所以有過腦外科病史和眼睛受過傷的人,以及電焊工人一定要注意事先照一次頭部x光。 另外強磁場可以引起金屬物品如叉子、鑰匙、氧氣瓶等飛向設備中心,從而造成病人的傷亡。所以屋子中是嚴禁任何金屬物品的。 至於類似輻射的傷害,核磁的作用是不明顯的,只要你不是天天照,年年照,就不會有任何副作用,沒有必要佩戴嚴格的防護用具。
由於在核磁共振機器及核磁共振檢查室內存在非常強大的磁場。
因此,裝有心臟起搏器者,以及血管手術後留有金屬夾、金屬支架者,或其他的冠狀動脈、食管、前列腺、膽道進行金屬支架手術者,絕對嚴禁作核磁共振檢查,否則,由於金屬受強大磁場的吸引而移動,將可能產生嚴重後果以致生命危險。
所以一般在醫院的核磁共振檢查室門外,都有紅色或黃色的醒目標志註明有金屬物品嚴禁進行核磁共振檢查的情況。
3、MRI核磁共振對人身體有何影響,謝謝
MRI也就是核磁共振成像,英文全稱是:nuclear magnetic resonance imaging,之所以後來不稱為核磁共振而改稱磁共振,是因為日本科學家提出其國家備受核武器傷害,為表示尊重,就把核字去掉了。
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MR)。
MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。
MR提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MR對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。
MR也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MR的檢查,另外價格比較昂貴。
磁共振成像是斷層成像的一種,它利用磁共振現象從人體中獲得電磁信號,並重建出人體信息。1946年斯坦福大學的Flelix Bloch和哈佛大學的Edward Purcell各自獨立的發現了核磁共振現象。磁共振成像技術正是基於這一物理現象。1972年Paul Lauterbur 發展了一套對核磁共振信號進行空間編碼的方法,這種方法可以重建出人體圖像。
磁共振成像技術與其它斷層成像技術(如CT)有一些共同點,比如它們都可以顯示某種物理量(如密度)在空間中的分布;同時也有它自身的特色,磁共振成像可以得到任何方向的斷層圖像,三維體圖像,甚至可以得到空間-波譜分布的四維圖像。
像PET和SPET一樣,用於成像的磁共振信號直接來自於物體本身,也可以說,磁共振成像也是一種發射斷層成像。但與PET和SPET不同的是磁共振成像不用注射放射性同位素就可成像。這一點也使磁共振成像技術更加安全。
從磁共振圖像中我們可以得到物質的多種物理特性參數,如質子密度,自旋-晶格馳豫時間T1,自旋-自旋馳豫時間T2,擴散系數,磁化系數,化學位移等等。對比其它成像技術(如CT 超聲 PET等)磁共振成像方式更加多樣,成像原理更加復雜,所得到信息也更加豐富。因此磁共振成像成為醫學影像中一個熱門的研究方向。
核磁共振成像原理:原子核帶有正電,許多元素的原子核,如1H、19FT和31P等進行自旋運動。通常情況下,原子核自旋軸的排列是無規律的,但將其置於外加磁場中時,核自旋空間取向從無序向有序過渡。自旋系統的磁化矢量由零逐漸增長,當系統達到平衡時,磁化強度達到穩定值。如果此時核自旋系統受到外界作用,如一定頻率的射頻激發原子核即可引起共振效應。在射頻脈沖停止後,自旋系統已激化的原子核,不能維持這種狀態,將回復到磁場中原來的排列狀態,同時釋放出微弱的能量,成為射電信號,把這許多信號檢出,並使之能進行空間分辨,就得到運動中原子核分布圖像。原子核從激化的狀態回復到平衡排列狀態的過程叫弛豫過程。它所需的時間叫弛豫時間。弛豫時間有兩種即T1和T2,T1為自旋-點陣或縱向馳豫時間T2,T2為自旋-自旋或橫向弛豫時間。
磁共振最常用的核是氫原子核質子(1H),因為它的信號最強,在人體組織內也廣泛存在。影響磁共振影像因素包括:(a)質子的密度;(b)弛豫時間長短;(c)血液和腦脊液的流動;(d)順磁性物質(e)蛋白質。磁共振影像灰階特點是,磁共振信號愈強,則亮度愈大,磁共振的信號弱,則亮度也小,從白色、灰色到黑色。各種組織磁共振影像灰階特點如下;脂肪組織,松質骨呈白色;腦脊髓、骨髓呈白灰色;內臟、肌肉呈灰白色;液體,正常速度流血液呈黑色;骨皮質、氣體、含氣肺呈黑色。
核磁共振的另一特點是流動液體不產生信號稱為流動效應或流動空白效應。因此血管是灰白色管狀結構,而血液為無信號的黑色。這樣使血管很容易軟組織分開。正常脊髓周圍有腦脊液包圍,腦脊液為黑色的,並有白色的硬膜為脂肪所襯托,使脊髓顯示為白色的強信號結構。核磁共振已應用於全身各系統的成像診斷。效果最佳的是顱腦,及其脊髓、心臟大血管、關節骨骼、軟組織及盆腔等。對心血管疾病不但可以觀察各腔室、大血管及瓣膜的解剖變化,而且可作心室分析,進行定性及半定量的診斷,可作多個切面圖,空間解析度高,顯示心臟及病變全貌,及其與周圍結構的關系,優於其他X線成像、二維超聲、核素及CT檢查。在對腦脊髓病變診斷時,可作冠狀、矢狀及橫斷面像。
檢查目的:顱腦及脊柱、脊髓病變,五官科疾病,心臟疾病,縱膈腫塊,骨關節和肌肉病變,子宮、卵巢、膀胱、前列腺、肝、腎、胰等部位的病變。
優點:1.MRI對人體沒有損傷;
2.MRI能獲得腦和脊髓的立體圖像,不像CT那樣一層一層地掃描而有可能漏掉病變部位;
3.能診斷心臟病變,CT因掃描速度慢而難以勝任;
4.對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT。
缺點:1.和CT一樣,MRI也是影像診斷,很多病變單憑MRI仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
2.對肺部的檢查不優於X線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
3.對胃腸道的病變不如內窺鏡檢查;
4.體內留有金屬物品者不宜接受MRI。
5. 危重病人不能做
6.妊娠3個月內的
7.帶有心臟起搏器的
核磁共振檢查的注意事項
由於在核磁共振機器及核磁共振檢查室內存在非常強大的磁場,因此,裝有心臟起搏器者,以及血管手術後留有金屬夾、金屬支架者,或其他的冠狀動脈、食管、前列腺、膽道進行金屬支架手術者,絕對嚴禁作核磁共振檢查,否則,由於金屬受強大磁場的吸引而移動,將可能產生嚴重後果以致生命危險。一般在醫院的核磁共振檢查室門外,都有紅色或黃色的醒目標志註明絕對嚴禁進行核磁共振檢查的情況。
身體內有不能除去的其他金屬異物,如金屬內固定物、人工關節、金屬假牙、支架、銀夾、彈片等金屬存留者,為檢查的相對禁忌,必須檢查時,應嚴密觀察,以防檢查中金屬在強大磁場中移動而損傷鄰近大血管和重要組織,產生嚴重後果,如無特殊必要一般不要接受核磁共振檢查。有金屬避孕環及活動的金屬假牙者一定要取出後再進行檢查。
有時,遺留在體內的金屬鐵離子可能影響圖像質量,甚至影響正確診斷。
在進入核磁共振檢查室之前,應去除身上帶的手機、呼機、磁卡、手錶、硬幣、鑰匙、打火機、金屬皮帶、金屬項鏈、金屬耳環、金屬紐扣及其他金屬飾品或金屬物品。否則,檢查時可能影響磁場的均勻性,造成圖像的干擾,形成偽影,不利於病灶的顯示;而且由於強磁場的作用,金屬物品可能被吸進核磁共振機,從而對非常昂貴的核磁共振機造成破壞;另外,手機、呼機、磁卡、手錶等物品也可能會遭到強磁場的破壞,而造成個人財物不必要的損失。
近年來,隨著科技的進步與發展,有許多骨科內固定物,特別是脊柱的內固定物,開始用鈦合金或鈦金屬製成。由於鈦金屬不受磁場的吸引,在磁場中不會移動。因此體內有鈦金屬內固定物的病人,進行核磁共振檢查時是安全的;而且鈦金屬也不會對核磁共振的圖像產生干擾。這對於患有脊柱疾病並且需要接受脊柱內固定手術的病人是非常有價值的。但是鈦合金和鈦金屬製成的內固定物價格昂貴,在一定程度上影響了它的推廣應用。
MRI檢查適應症
1、神經系統病變:腦梗塞、腦腫瘤、炎症、變性病、先天畸形、外傷等,為應用最早的人體系統,目前積累了豐富的經驗,對病變的定位、定性診斷較為准確、及時,可發現早期病變。
2、心血管系統:可用於心臟病、心肌病、心包腫瘤、心包積液以及附壁血栓、內膜片的剝離等的診斷。
3、胸部病變:縱隔內的腫物、淋巴結以及胸膜病變等,可以顯示肺內團塊與較大氣管和血管的關系等。
4、腹部器官:肝癌、肝血管瘤及肝囊腫的診斷與鑒別診斷,腹內腫塊的診斷與鑒別診斷,尤其是腹膜後的病變。
5、盆腔臟器;子宮肌瘤、子宮其它腫瘤、卵巢腫瘤,盆腔內包塊的定性定位,直腸、前列腺和膀胱的腫物等。
6、骨與關節:骨內感染、腫瘤、外傷的診斷與病變范圍,尤其對一些細微的改變如骨挫傷等有較大價值,關節內軟骨、韌帶、半月板、滑膜、滑液囊等病變及骨髓病變有較高診斷價值。
7、全身軟組織病變:無論來源於神經、血管、淋巴管、肌肉、結締組織的腫瘤、感染、變性病變等,皆可做出較為准確的定位、定性的診斷。
MRI(Matz's Ruby Interpreter)
標準的Ruby實現,標準的Ruby解釋器
4、了解MRI行業
1、看您的職位待遇應該是技術支持或者市場支持類工作。
2、這個行業最賺錢的是醫院其次是經銷商,銷售人員如果能力很強也有些收獲。
3、設備很貴,醫院進設備是有數量的,平時維護和產品維護工作是一個長期工作。
另附:
MRI
MRI也就是磁共振成像,英文全稱是:Magnetic Resonance Imaging。在這項技術誕生之初曾被稱為核磁共振成像,到了20世紀80年代初,作為醫學新技術的NMR成像(NMR imaging)一詞越來越為公眾所熟悉。隨著大磁體的安裝,有人開始擔心字母「N」可能會對磁共振成像的發展產生負面影響。另外,「nuclear」一詞還容易使醫院工作人員對磁共振室產生另一個核醫學科的聯想。因此,為了突出這一檢查技術不產生電離輻射的優點,同時與使用放射性元素的核醫學相區別,放射學家和設備製造商均同意把「核磁共振成像術」簡稱為「磁共振成像(MRI)」。
目錄
技術特點
工作原理
成像原理
醫療用途
儀器設備醫療特點
MRI檢查適應症
MRI檢查縮寫
核磁共振技術的歷史
編輯本段
技術特點
磁共振成像是斷層成像的一種,它利用磁共振現象從人體中獲得電磁信號,並重建出人體信息。1946年斯坦福大學的Flelix Bloch和哈佛大學的Edward Purcell各自獨立的發現了核磁共振現象。磁共振成像技術正是基於這一物理現象。1972年Paul Lauterbur 發展了一套對核磁共振信號進行空間編碼的方法,這種方法可以重建出人體圖像。
MRI
磁共振成像技術與其它斷層成像技術(如CT)有一些共同點,比如它們都可以顯示某種物理量(如密度)在空間中的分布;同時也有它自身的特色,磁共振成像可以得到任何方向的斷層圖像,三維體圖像,甚至可以得到空間-波譜分布的四維圖像。
像PET和SPET一樣,用於成像的磁共振信號直接來自於物體本身,也可以說,磁共振成像也是一種發射斷層成像。但與PET和SPET不同的是磁共振成像不用注射放射性同位素就可成像。這一點也使磁共振成像技術更加安全。
從磁共振圖像中我們可以得到物質的多種物理特性參數,如質子密度,自旋-晶格馳豫時間T1,自旋-自旋馳豫時間T2,擴散系數,磁化系數,化學位移等等。對比其它成像技術(如CT 超聲 PET等)磁共振成像方式更加多樣,成像原理更加復雜,所得到信息也更加豐富。因此磁共振成像成為醫學影像中一個熱門的研究方向。
MRI也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MRI的檢查,另外價格比較昂貴。
編輯本段
工作原理
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MR)。
MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過計算機處理轉換後在屏幕上顯示圖像。
編輯本段
成像原理
核磁共振成像原理:原子核帶有正電,許多元素的原子核,如1H、19FT和31P等進行自旋運動。通常情況下,原子核自旋軸的排列是無規律的,但將其置於外加磁場中時,核自旋空間取向從無序向有序過渡。這樣一來,自旋的核同時也以自旋軸和外加磁場的向量方向的夾角繞外加磁場向量旋進,這種旋進叫做拉莫爾旋進,就像旋轉的陀螺在地球的重力下的轉動。自旋系統的磁化矢量由零逐漸增長,當系統達到平衡時,磁化強度達到穩定值。如果此時核自旋系統受到外界作用,如一定頻率的射頻激發原子核即可引起共振效應。這樣,自旋核還要在射頻方向上旋進,這種疊加的旋進狀態叫做章動。在射頻脈沖停止後,自旋系統已激化的原子核,不能維持這種狀態,將回復到磁場中原來的排列狀態,同時釋放出微弱的能量,成為射電信號,把這許多信號檢出,並使之能進行空間分辨,就得到運動中原子核分布圖像。原子核從激化的狀態回復到平衡排列狀態的過程叫弛豫過程。它所需的時間叫弛豫時間。弛豫時間有兩種即T1和T2,T1為自旋-點陣或縱向馳豫時間T2,T2為自旋-自旋或橫向弛豫時間。
編輯本段
醫療用途
磁共振最常用的核是氫原子核質子(1H),因為它的信號最強,在人體組織內也廣泛存在。影響磁共振影像因素包括:(a)質子的密度;(b)弛豫時間長短;(c)血液和腦脊液的流動;(d)順磁性物質(e)蛋白質。磁共振影像灰階特點是,磁共振信號愈強,則亮度愈大,磁共振的信號弱,則亮度也小,從白色、灰色到黑色。各種組織磁共振影像灰階特點如下;脂肪組織,松質骨呈白色;腦脊髓、骨髓呈白灰色;內臟、肌肉呈灰白色;液體,正常速度流血液呈黑色;骨皮質、氣體、含氣肺呈黑色。
核磁共振的另一特點是流動液體不產生信號稱為流動效應或流動空白效應。因此血管是灰白色管狀結構,而血液為無信號的黑色。這樣使血管很容易軟組織分開。正常脊髓周圍有腦脊液包圍,腦脊液為黑色的,並有白色的硬膜為脂肪所襯托,使脊髓顯示為白色的強信號結構。核磁共振已應用於全身各系統的成像診斷。效果最佳的是顱腦,及其脊髓、心臟大血管、關節骨骼、軟組織及盆腔等。對心血管疾病不但可以觀察各腔室、大血管及瓣膜的解剖變化,而且可作心室分析,進行定性及半定量的診斷,可作多個切面圖,空間解析度高,顯示心臟及病變全貌,及其與周圍結構的關系,優於其他X線成像、二維超聲、核素及CT檢查。在對腦脊髓病變診斷時,可作冠狀、矢狀及橫斷面像。
編輯本段
儀器設備醫療特點
MR提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MR對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。
檢查目的:顱腦及脊柱、脊髓病變,五官科疾病,心臟疾病,縱膈腫塊,骨關節和肌肉病變,子宮、卵巢、膀胱、前列腺、肝、腎、胰等部位的病變。
優點:1.MRI對人體沒有電離輻射損傷;
2.MRI能獲得原生三維斷面成像而無需重建就可獲得多方位的圖像;
3.軟組織結構顯示清晰,對中樞神經系統、膀胱、直腸、子宮、陰道、關節、肌肉等檢查優於CT。
4.多序列成像、多種圖像類型,為明確病變性質提供更豐富的影像信息。
缺點:1.和CT一樣,MRI也是影像診斷,很多病變單憑MRI仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
2.對肺部的檢查不優於X線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
3.對胃腸道的病變不如內窺鏡檢查;
4.對骨折的診斷的敏感性不如CT及X線平片;
5.體內留有金屬物品者不宜接受MRI。
6. 危重病人不宜做
7.妊娠3個月內者除非必須,不推薦進行MRI檢查
8.帶有心臟起搏器者不能進行MRI檢查,也不能靠近MRI設備
9.多數MRI設備檢查空間較為封閉,部分患者因恐懼不能配合完成檢查
10.檢查所需時間較長
注意事項
由於在核磁共振機器及核磁共振檢查室內存在非常強大的磁場,因此,裝有心臟起搏器者,以及血管手術後留有金屬夾、金屬支架者,或其他的冠狀動脈、食管、前列腺、膽道進行金屬支架手術者,絕對嚴禁作核磁共振檢查,否則,由於金屬受強大磁場的吸引而移動,將可能產生嚴重後果以致生命危險。一般在醫院的核磁共振檢查室門外,都有紅色或黃色的醒目標志註明絕對嚴禁進行核磁共振檢查的情況。
身體內有不能除去的其他金屬異物,如金屬內固定物、人工關節、金屬假牙、支架、銀夾、彈片等金屬存留者,為檢查的相對禁忌,必須檢查時,應嚴密觀察,以防檢查中金屬在強大磁場中移動而損傷鄰近大血管和重要組織,產生嚴重後果,如無特殊必要一般不要接受核磁共振檢查。有金屬避孕環及活動的金屬假牙者一定要取出後再進行檢查。
有時,遺留在體內的金屬鐵離子可能影響圖像質量,甚至影響正確診斷。
在進入核磁共振檢查室之前,應去除身上帶的手機、呼機、磁卡、手錶、硬幣、鑰匙、打火機、金屬皮帶、金屬項鏈、金屬耳環、金屬紐扣及其他金屬飾品或金屬物品。否則,檢查時可能影響磁場的均勻性,造成圖像的干擾,形成偽影,不利於病灶的顯示;而且由於強磁場的作用,金屬物品可能被吸進核磁共振機,從而對非常昂貴的核磁共振機造成破壞;另外,手機、呼機、磁卡、手錶等物品也可能會遭到強磁場的破壞,而造成個人財物不必要的損失。
MRI
近年來,隨著科技的進步與發展,有許多骨科內固定物,特別是脊柱的內固定物,開始用鈦合金或鈦金屬製成。由於鈦金屬不受磁場的吸引,在磁場中不會移動。因此體內有鈦金屬內固定物的病人,進行核磁共振檢查時是安全的;而且鈦金屬也不會對核磁共振的圖像產生干擾。這對於患有脊柱疾病並且需要接受脊柱內固定手術的病人是非常有價值的。但是鈦合金和鈦金屬製成的內固定物價格昂貴,在一定程度上影響了它的推廣應用。
編輯本段
MRI檢查適應症
1、神經系統病變:腦梗塞、腦腫瘤、炎症、變性病、先天畸形、外傷等,為應用最早的人體系統,目前積累了豐富的經驗,對病變的定位、定性診斷較為准確、及時,可發現早期病變。
2、心血管系統:可用於心臟病、心肌病、心包腫瘤、心包積液以及附壁血栓、內膜片的剝離等的診斷。
3、胸部病變:縱隔內的腫物、淋巴結以及胸膜病變等,可以顯示肺內團塊與較大氣管和血管的關系等。
4、腹部器官:肝癌、肝血管瘤及肝囊腫的診斷與鑒別診斷,腹內腫塊的診斷與鑒別診斷,尤其是腹膜後的病變。
5、盆腔臟器;子宮肌瘤、子宮其它腫瘤、卵巢腫瘤,盆腔內包塊的定性定位,直腸、前列腺和膀胱的腫物等。
6、骨與關節:骨內感染、腫瘤、外傷的診斷與病變范圍,尤其對一些細微的改變如骨挫傷等有較大價值,關節內軟骨、韌帶、半月板、滑膜、滑液囊等病變及骨髓病變有較高診斷價值。
7、全身軟組織病變:無論來源於神經、血管、淋巴管、肌肉、結締組織的腫瘤、感染、變性病變等,皆可做出較為准確的定位、定性的診斷。
MRI(Matz's Ruby Interpreter)
標準的Ruby實現,標準的Ruby解釋器
編輯本段
MRI檢查縮寫
MRA
MR血管成像,分為使用造影劑和不使用造影劑。
MRCP
MR膽管成像,顯示肝內外膽管及膽囊,確定有無結石及膽道擴張。
MRU
MR泌尿成像,顯示輸尿管及膀胱,確定有無尿路擴張及畸形等疾病。
MRM
MR神經成像,主要運用於周圍神經疾病診斷。
缺點不足 MR也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MR的檢查,另外價格比較昂貴、掃描時間相對較長
編輯本段
核磁共振技術的歷史
核磁共振技術的歷史
1930年代,物理學家伊西多·拉比發現在磁場中的原子核會沿磁場方向呈正向或反向有序平行排列,而施加無線電波之後,原子核的自旋方向發生翻轉。這是人類關於原子核與磁場以及外加射頻場相互作用的最早認識。由於這項研究,拉比於1944年獲得了諾貝爾物理學獎。
1946年兩位美國科學家布洛赫和珀塞爾發現,將具有奇數個核子(包括質子和中子)的原子核置於磁場中,再施加以特定頻率的射頻場,就會發生原子核吸收射頻場能量的現象,這就是人們最初對核磁共振現象的認識。為此他們兩人獲得了1950年度諾貝爾物理學獎。
人們在發現核磁共振現象之後很快就產生了實際用途,化學家利用分子結構對氫原子周圍磁場產生的影響,發展出了核磁共振譜,用於解析分子結構,隨著時間的推移,核磁共振譜技術不斷發展,從最初的一維氫譜發展到13C譜、二維核磁共振譜等高級譜圖,核磁共振技術解析分子結構的能力也越來越強,進入1990年代以後,人們甚至發展出了依靠核磁共振信息確定蛋白質分子三級結構的技術,使得溶液相蛋白質分子結構的精確測定成為可能。
另一方面,醫學家們發現水分子中的氫原子可以產生核磁共振現象,利用這一現象可以獲取人體內水分子分布的信息,從而精確繪制人體內部結構,在這一理論基礎上1969年,紐約州立大學南部醫學中心的醫學博士達馬迪安通過測核磁共振的弛豫時間成功的將小鼠的癌細胞與正常組織細胞區分開來,在達馬迪安新技術的啟發下紐約州立大學石溪分校的物理學家保羅·勞特伯爾於1973年開發出了基於核磁共振現象的成像技術(MRI),並且應用他的設備成功地繪制出了一個活體蛤蜊地內部結構圖像。勞特伯爾之後,MRI技術日趨成熟,應用范圍日益廣泛,成為一項常規的醫學檢測手段,廣泛應用於帕金森氏症、多發性硬化症等腦部與脊椎病變以及癌症的治療和診斷。2003年,保羅·勞特伯爾和英國諾丁漢大學教授彼得·曼斯菲爾因為他們在核磁共振成像技術方面的貢獻獲得了當年度的諾貝爾生理學或醫學獎。
5、帶牙套能做腰椎核磁共振嗎? 帶牙套能做腰椎核磁共振嗎?
如果是塑料牙套就可以做核磁共振
金屬的不能做核磁共振,鈦合金的牙齒也可以做
總的一句話,身上跟金屬類物質有關的東西都不能帶進去,因為裡面是一個磁場,只要能被磁場干擾,吸引的東西不能帶,具體可以看看下面的內容。
由於在核磁共振機器及核磁共振檢查室內存在非常強大的磁場,因此,裝有心臟起搏器者,以及血管手術後留有金屬夾、金屬支架者,或其他的冠狀動脈、食管、前列腺、膽道進行金屬支架手術者,絕對嚴禁作核磁共振檢查,否則,由於金屬受強大磁場的吸引而移動,將可能產生嚴重後果以致生命危險。一般在醫院的核磁共振檢查室門外,都有紅色或黃色的醒目標志註明絕對嚴禁進行核磁共振檢查的情況。
身體內有不能除去的其他金屬異物,如金屬內固定物、人工關節、金屬假牙、支架、銀夾、彈片等金屬存留者,為檢查的相對禁忌,必須檢查時,應嚴密觀察,以防檢查中金屬在強大磁場中移動而損傷鄰近大血管和重要組織,產生嚴重後果,如無特殊必要一般不要接受核磁共振檢查。有金屬避孕環及活動的金屬假牙者一定要取出後再進行檢查。
有時,遺留在體內的金屬鐵離子可能影響圖像質量,甚至影響正確診斷。
在進入核磁共振檢查室之前,應去除身上帶的手機、呼機、磁卡、手錶、硬幣、鑰匙、打火機、金屬皮帶、金屬項鏈、金屬耳環、金屬紐扣及其他金屬飾品或金屬物品。否則,檢查時可能影響磁場的均勻性,造成圖像的干擾,形成偽影,不利於病灶的顯示;而且由於強磁場的作用,金屬物品可能被吸進核磁共振機,從而對非常昂貴的核磁共振機造成破壞;另外,手機、呼機、磁卡、手錶等物品也可能會遭到強磁場的破壞,而造成個人財物不必要的損失。
近年來,隨著科技的進步與發展,有許多骨科內固定物,特別是脊柱的內固定物,開始用鈦合金或鈦金屬製成。由於鈦金屬不受磁場的吸引,在磁場中不會移動。因此體內有鈦金屬內固定物的病人,進行核磁共振檢查時是安全的;而且鈦金屬也不會對核磁共振的圖像產生干擾。這對於患有脊柱疾病並且需要接受脊柱內固定手術的病人是非常有價值的。但是鈦合金和鈦金屬製成的內固定物價格昂貴,在一定程度上影響了它的推廣應用。
6、體內有鈦合金的患者為什麼可以做核磁共振
因為鈦合金不受磁場吸引或受到的吸引力比較小,不足以引起在體內的移動,所以可以做核磁。核磁檢查過程中會產生強大的磁場,金屬在磁場里會移動(主要是鐵、鈷、鎳這類具有鐵磁性的金屬受到的影響較大)。
而不具有鐵磁性的金屬如金、純銀、純鈦、銀汞合金、鈦合金等,一般不受磁場吸引或受到的吸引力比較小,不足以引起在體內的移動,體內有這些金屬進行磁共振檢查仍被認為是安全的。
(6)脊柱內固定是鈦合金的可否做mri擴展資料:
就算體內的金屬植入物被認為對於磁共振檢查是安全的,也會產生一定偽影,在磁共振圖像上表現為范圍或大或小的「黑影」(低信號盲區)和圖像扭曲失真,進而影響醫生的診斷。
一般來說,具有鐵磁性的金屬如不銹鋼、鎳鉻合金、鈷鉻合金等產生的偽影比較嚴重,用於大關節置換的鋁銅合金所導致的偽影也會對診斷有影響。而金片、純銀、純鈦、銀汞合金、鈦合金等金屬植入物僅有輕度偽影,一般不會影響醫生診斷。
7、頸椎病必須要做核磁共振檢查嗎
是的發熱,頸椎病往往需要做磁共振檢查 檢查、確診頸部疾患解組頸椎軟組織疾病(頸椎病、頸椎間盤突症、頸椎結核、頸椎間隙染、頸椎腫瘤、頸段脊髓病變等)。
頸椎病要看具體是哪個椎骨病變,這個需要CT定位才能看清楚的,X光片是無法看出的指導意見:因此要想確診,是必須要做CT的,注意檢查清楚看。
(7)脊柱內固定是鈦合金的可否做mri擴展資料:
由於在核磁共振機器及核磁共振檢查室內存在非常強大的磁場,因此,裝有心臟起搏器者,以及血管手術後留有金屬夾、金屬支架者,或其他的冠狀動脈、食管、前列腺、膽道進行金屬支架手術者,絕對嚴禁作核磁共振檢查,否則,由於金屬受強大磁場的吸引而移動,將可能產生嚴重後果以致生命危險。
一般在醫院的核磁共振檢查室門外,都有紅色或黃色的醒目標志註明絕對嚴禁進行核磁共振檢查的情況。
身體內有不能除去的其他金屬異物,如金屬內固定物、人工關節、金屬假牙、支架、銀夾、彈片等金屬存留者,為檢查的相對禁忌,必須檢查時,應嚴密觀察,以防檢查中金屬在強大磁場中移動而損傷鄰近大血管和重要組織,產生嚴重後果,如無特殊必要一般不要接受核磁共振檢查。有金屬避孕環及活動的金屬假牙者一定要取出後再進行檢查。
有時,遺留在體內的金屬鐵離子可能影響圖像質量,甚至影響正確診斷。
在進入核磁共振檢查室之前,應去除身上帶的手機、呼機、磁卡、手錶、硬幣、鑰匙、打火機、金屬皮帶、金屬項鏈、金屬耳環、金屬紐扣及其他金屬飾品或金屬物品。
否則,檢查時可能影響磁場的均勻性,造成圖像的干擾,形成偽影,不利於病灶的顯示;而且由於強磁場的作用,金屬物品可能被吸進核磁共振機,從而對非常昂貴的核磁共振機造成破壞;另外,手機、呼機、磁卡、手錶等物品也可能會遭到強磁場的破壞,而造成個人財物不必要的損失。
近年來,隨著科技的進步與發展,有許多骨科內固定物,特別是脊柱的內固定物,開始用鈦合金或鈦金屬製成。由於鈦金屬不受磁場的吸引,在磁場中不會移動。
因此體內有鈦金屬內固定物的病人,進行核磁共振檢查時是安全的;而且鈦金屬也不會對核磁共振的圖像產生干擾。
這對於患有脊柱疾病並且需要接受脊柱內固定手術的病人是非常有價值的。但是鈦合金和鈦金屬製成的內固定物價格昂貴,在一定程度上影響了它的推廣應用。
8、求醫學影像技術 論文題目 關於MRI方面的
http://ke.baidu.com/pic/1/11455284513734360.jpgMRI也就是核磁共振成像,英文全稱是: magnetic resonance imaging,之所以後來不稱為核磁共振而改稱磁共振,是因為日本科學家提出其國家備受核武器傷害,為表示尊重,就把核字去掉了。
核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為核磁共振成像術(MR)。
MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。
MR提供的信息量不但大於醫學影像學中的其他許多成像術,而且不同於已有的成像術,因此,它對疾病的診斷具有很大的潛在優越性。它可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像,不會產生CT檢測中的偽影;不需注射造影劑;無電離輻射,對機體沒有不良影響。MR對檢測腦內血腫、腦外血腫、腦腫瘤、顱內動脈瘤、動靜脈血管畸形、腦缺血、椎管內腫瘤、脊髓空洞症和脊髓積水等顱腦常見疾病非常有效,同時對腰椎椎間盤後突、原發性肝癌等疾病的診斷也很有效。
MR也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MR的檢查,另外價格比較昂貴。
磁共振成像是斷層成像的一種,它利用磁共振現象從人體中獲得電磁信號,並重建出人體信息。1946年斯坦福大學的Flelix Bloch和哈佛大學的Edward Purcell各自獨立的發現了核磁共振現象。磁共振成像技術正是基於這一物理現象。1972年Paul Lauterbur 發展了一套對核磁共振信號進行空間編碼的方法,這種方法可以重建出人體圖像。
磁共振成像技術與其它斷層成像技術(如CT)有一些共同點,比如它們都可以顯示某種物理量(如密度)在空間中的分布;同時也有它自身的特色,磁共振成像可以得到任何方向的斷層圖像,三維體圖像,甚至可以得到空間-波譜分布的四維圖像。
像PET和SPET一樣,用於成像的磁共振信號直接來自於物體本身,也可以說,磁共振成像也是一種發射斷層成像。但與PET和SPET不同的是磁共振成像不用注射放射性同位素就可成像。這一點也使磁共振成像技術更加安全。
從磁共振圖像中我們可以得到物質的多種物理特性參數,如質子密度,自旋-晶格馳豫時間T1,自旋-自旋馳豫時間T2,擴散系數,磁化系數,化學位移等等。對比其它成像技術(如CT 超聲 PET等)磁共振成像方式更加多樣,成像原理更加復雜,所得到信息也更加豐富。因此磁共振成像成為醫學影像中一個熱門的研究方向。
核磁共振成像原理:原子核帶有正電,許多元素的原子核,如1H、19FT和31P等進行自旋運動。通常情況下,原子核自旋軸的排列是無規律的,但將其置於外加磁場中時,核自旋空間取向從無序向有序過渡。自旋系統的磁化矢量由零逐漸增長,當系統達到平衡時,磁化強度達到穩定值。如果此時核自旋系統受到外界作用,如一定頻率的射頻激發原子核即可引起共振效應。在射頻脈沖停止後,自旋系統已激化的原子核,不能維持這種狀態,將回復到磁場中原來的排列狀態,同時釋放出微弱的能量,成為射電信號,把這許多信號檢出,並使之能進行空間分辨,就得到運動中原子核分布圖像。原子核從激化的狀態回復到平衡排列狀態的過程叫弛豫過程。它所需的時間叫弛豫時間。弛豫時間有兩種即T1和T2,T1為自旋-點陣或縱向馳豫時間T2,T2為自旋-自旋或橫向弛豫時間。
磁共振最常用的核是氫原子核質子(1H),因為它的信號最強,在人體組織內也廣泛存在。影響磁共振影像因素包括:(a)質子的密度;(b)弛豫時間長短;(c)血液和腦脊液的流動;(d)順磁性物質(e)蛋白質。磁共振影像灰階特點是,磁共振信號愈強,則亮度愈大,磁共振的信號弱,則亮度也小,從白色、灰色到黑色。各種組織磁共振影像灰階特點如下;脂肪組織,松質骨呈白色;腦脊髓、骨髓呈白灰色;內臟、肌肉呈灰白色;液體,正常速度流血液呈黑色;骨皮質、氣體、含氣肺呈黑色。
核磁共振的另一特點是流動液體不產生信號稱為流動效應或流動空白效應。因此血管是灰白色管狀結構,而血液為無信號的黑色。這樣使血管很容易軟組織分開。正常脊髓周圍有腦脊液包圍,腦脊液為黑色的,並有白色的硬膜為脂肪所襯托,使脊髓顯示為白色的強信號結構。核磁共振已應用於全身各系統的成像診斷。效果最佳的是顱腦,及其脊髓、心臟大血管、關節骨骼、軟組織及盆腔等。對心血管疾病不但可以觀察各腔室、大血管及瓣膜的解剖變化,而且可作心室分析,進行定性及半定量的診斷,可作多個切面圖,空間解析度高,顯示心臟及病變全貌,及其與周圍結構的關系,優於其他X線成像、二維超聲、核素及CT檢查。在對腦脊髓病變診斷時,可作冠狀、矢狀及橫斷面像。
檢查目的:顱腦及脊柱、脊髓病變,五官科疾病,心臟疾病,縱膈腫塊,骨關節和肌肉病變,子宮、卵巢、膀胱、前列腺、肝、腎、胰等部位的病變。
優點:1.MRI對人體沒有損傷;
2.MRI能獲得腦和脊髓的立體圖像,不像CT那樣一層一層地掃描而有可能漏掉病變部位;
3.能診斷心臟病變,CT因掃描速度慢而難以勝任;
4.對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT。
缺點:1.和CT一樣,MRI也是影像診斷,很多病變單憑MRI仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
2.對肺部的檢查不優於X線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
3.對胃腸道的病變不如內窺鏡檢查;
4.體內留有金屬物品者不宜接受MRI。
5. 危重病人不能做
6.妊娠3個月內的
7.帶有心臟起搏器的
核磁共振檢查的注意事項
由於在核磁共振機器及核磁共振檢查室內存在非常強大的磁場,因此,裝有心臟起搏器者,以及血管手術後留有金屬夾、金屬支架者,或其他的冠狀動脈、食管、前列腺、膽道進行金屬支架手術者,絕對嚴禁作核磁共振檢查,否則,由於金屬受強大磁場的吸引而移動,將可能產生嚴重後果以致生命危險。一般在醫院的核磁共振檢查室門外,都有紅色或黃色的醒目標志註明絕對嚴禁進行核磁共振檢查的情況。
身體內有不能除去的其他金屬異物,如金屬內固定物、人工關節、金屬假牙、支架、銀夾、彈片等金屬存留者,為檢查的相對禁忌,必須檢查時,應嚴密觀察,以防檢查中金屬在強大磁場中移動而損傷鄰近大血管和重要組織,產生嚴重後果,如無特殊必要一般不要接受核磁共振檢查。有金屬避孕環及活動的金屬假牙者一定要取出後再進行檢查。
有時,遺留在體內的金屬鐵離子可能影響圖像質量,甚至影響正確診斷。
在進入核磁共振檢查室之前,應去除身上帶的手機、呼機、磁卡、手錶、硬幣、鑰匙、打火機、金屬皮帶、金屬項鏈、金屬耳環、金屬紐扣及其他金屬飾品或金屬物品。否則,檢查時可能影響磁場的均勻性,造成圖像的干擾,形成偽影,不利於病灶的顯示;而且由於強磁場的作用,金屬物品可能被吸進核磁共振機,從而對非常昂貴的核磁共振機造成破壞;另外,手機、呼機、磁卡、手錶等物品也可能會遭到強磁場的破壞,而造成個人財物不必要的損失。
近年來,隨著科技的進步與發展,有許多骨科內固定物,特別是脊柱的內固定物,開始用鈦合金或鈦金屬製成。由於鈦金屬不受磁場的吸引,在磁場中不會移動。因此體內有鈦金屬內固定物的病人,進行核磁共振檢查時是安全的;而且鈦金屬也不會對核磁共振的圖像產生干擾。這對於患有脊柱疾病並且需要接受脊柱內固定手術的病人是非常有價值的。但是鈦合金和鈦金屬製成的內固定物價格昂貴,在一定程度上影響了它的推廣應用。
編輯詞條
開放分類:
醫療、醫學影像
參考資料:
1.醫學影像技術
貢獻者:
wtrecamel、yo不動、waterone83、袖吞乾坤小武侯、dairui725
本詞條在以下詞條中被提及:
海洛因、肌肉萎縮性脊髓側索硬化症、原發性肝癌
「MRI」在英漢詞典中的解釋(來源:百度詞典):
MRI
abbr.
1. = Magnetic Resonance Imaging 【醫】磁共振造影
2. = Machine Readable Information 【電腦】機讀信息