導航:首頁 > 肌腱 > 超聲肌腱

超聲肌腱

發布時間:2020-07-29 21:23:40

1、超聲波的波形分類是哪幾種?

彌散作用:超聲波可以提高生物膜的通透性,超聲波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。

觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕關節炎病變和關節、肌腱、韌帶的退行性病變的治療。

空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。

聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。

消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。

2、B超的作用及原理是什麼?

除了心電圖、x光外就是b超,B超是利用超聲傳導技術和超聲圖像診斷技術的一種儀器,叫B超透視儀,主要運用在醫療領域 。
什麼叫「B超」
人耳的聽覺范圍有限度,只能對16-20000赫茲的聲音有感覺,20000赫茲以上的聲音就無法聽到,這種聲音稱為超聲。和普通的聲音一樣,超聲能向一定方向傳播,而且可以穿透物體,如果碰到障礙,就會產生回聲,不相同的障礙物就會產生不相同的回聲,人們通過儀器將這種回聲收集並顯示在屏幕上,可以用來了解物體的內部結構。利用這種原理,人們將超聲波用於診斷和治療人體疾病。在醫學臨床上應用的超聲診斷儀的許多類型,如A型、B型、M型、扇形和多普勒超聲型等。B型是其中一種,而且是臨床上應用最廣泛和簡便的一種。通過B超可獲得人體內臟各器官的各種切面圖形比較清晰。B超比較適用於肝、膽腎、膀胱、子宮、卵巢等多種臟器疾病的診斷。B超檢查的價格也比較便宜,又無不良反應,可反復檢查。B超檢查也有其不足之處。它的解析度不夠高,一些過小的病變不易被發現。一些含氣量高的臟器遮蓋的部分不易被十分清晰地顯示。同時檢查者的操作細致程度和經驗對診斷的准確性有很大關系。

可見它是應用超聲波的反射原理來工作的。

1)B超、彩超做為膽、腎結石的診斷,是目前比較好的工具之一;
2) B超是一種經濟、實用、可重復、無損傷的檢查手段。由於人體各組織的密度不同,不同組織具有不同的聲阻抗。當入射的超聲波進入相鄰的兩種組織或器官時,就會出現聲阻抗差,當此差值>0.1時,通過這兩種組織的交界面上的超聲波就會發生反射和折射。因而當聲波穿過時在兩種組織之間形成了聲學界面,不同組織又表現出不同的回聲。根據不同回聲超聲儀可以檢測出某些肌腱、韌帶、關節軟骨及某些骨的病變,是診斷骨科疾患的重要輔助手段,
3)尤其在產科的應用范圍得到空前的拓展,它對於評估胎兒結構是否異常、多胎妊娠、胎兒大小以及懷孕周期等狀況有著十分重要的意義,產科b超以其無痛、無創、快速三大優點而著稱於世。
4)在臨床上,它被廣泛應用於心內科、消化內科、泌尿科和婦產科疾病的診斷。

1.B超的工作原理 http://www.liontor.com/bcyl/bcdgzyl.htm
每秒振動2萬-10億次,人耳聽不到的聲波稱為超聲波。利用超聲波的物理特性進行診斷和治療的一門影像學科,稱為超聲醫學。其臨床應用范圍廣泛,目前已成為現代臨床醫學中不可缺少的診斷方法。
研究和應用超聲的物理特性,以某種方式掃查人體,診斷疾病的科學稱為超聲診斷學。超聲診斷學主要是研究人體對超聲的反作用規律,以了解人體內部情況,在現代醫學影像學中與CT、X線、核醫學、磁共振並駕齊驅,互為補充。它以強度低、頻率高、對人體無損傷、無痛苦、顯示方法多樣而著稱,尤其對人體軟組織的探測和心血管臟器的血流動力學觀察有其獨到之處。超聲診斷學包括作用原理、儀器構造、顯示方法、操作技術、記錄方法、以及界面對超聲的反射、散射或者透射信號的分析與判斷等內容。
超聲診斷儀有各種檔次,先進的高檔儀器結構復雜,具有高性能、多功能、高解析度和高清晰度等特點。它們的基本構件包括發射、掃查、接收、信號處理和顯示等五個組成部分,分為兩大部件,即主機和探頭。
2.B超原理簡介
http://www.ehelp.com.cn/physics/jxck/c8/05030020.htm
3.B超工作原理簡述http://www.chaoxin.com.cn/page3_2.asp

3、超聲波和B超是一個東西嗎

B超是利用超聲波檢查的方法,是B型超聲波的簡稱,另外以前還有A型超聲波,現在比較先進的是3D超聲。
但是超聲波現在不只是用在檢查上,臨床上已經有了超聲刀,應用在手術切開,及腫瘤的聚焦燒灼等。
所以超聲波和B超不能說完全是一樣的!!

4、B超與X光有什麼區別

成像媒介、原理均有不同。有時CT也採用的是X光。

X光是照單張投影照片,依據的是比爾定律。

CT是用多張投影照片重建出體內橫截面信息,依據的是中心切片定理。

B超是通過超聲波反射來成像。

5、肌腱炎的症狀

當運動時肌腱過度受壓,可引起肌腱發炎。偶爾而非經常運動的周末運動員很少被肌腱痛困擾、最常見的原因是同一關節受同一反復的動作的壓迫而引起。不僅僅發生在體育運動,而且在許多類型的辦公室工作或其他情況下也可發生。
治療
1.常規治療
急性期應使用冰敷,每數小時冰敷患區20分鍾;並且抬高並固定患肢;對於上肢的肌腱炎,可以使用支具或石膏固定於合適的功能位置,休息是緩解肌肉緊綳的最好方法;其他位置的肌腱炎,可以用彈力綳帶包紮減輕水腫。急性期過後,制定適合的康復計劃,比如外敷【濟愈堂肌腱順古安玉貼】來治療。堅持鍛煉來提高肌肉的強度,恢復活動范圍
2.葯物治療
可以使用非甾體抗炎葯物緩解疼痛。嚴重的疼痛,可以局部注射類固醇激素,可以控制炎症、減輕疼痛。然而不推薦反復多次注射類固醇,因為多次注射類固醇可以減弱肌腱的強度,導致肌腱斷裂。
3.手術治療
部分患者、尤其是產生粘連時;若以上治療方式無效,可考慮手術治療。術縱行切開狹窄腱鞘,切除一小條腱鞘,從而根除疼痛來源。缺點:創傷大,痛苦大,恢復期長。
4.理療
洗按摩浴可幫助提高體溫並促進血液循環。若肌腱炎發生在膝蓋部位,可用溫濕的毛巾熱敷。近年來有採用超聲波療法治療肌腱炎,特別是伴有鈣化的肌腱炎的報道,但其療效仍需要進一步證實。

6、什麼是超聲波?

人耳能聽到的聲波范圍是每秒震動20-20000次,低於20次的稱為次聲波,高於20000次的就是超聲波.

7、超聲波在各個領域的作用

超聲波是聲波大家族中的一員。
聲波是物體機械振動狀態(或能量)的傳播形式。所謂振動是指物質的質點在其平衡位置附近進行的往返運動。譬如,鼓面經敲擊後,它就上下振動,這種振動狀態通過空氣媒質向四面八方傳播,這便是聲波。
超聲波是指振動頻率大於20KHz以上的,人在自然環境下無法聽到和感受到的聲波。
超聲波治療的概念:
超聲治療學是超聲醫學的重要組成部分。超聲治療時將超聲波能量作用於人體病變部位,以達到治療疾患和促進機體康復的目的。
在全球,超聲波廣泛運用於診斷學、治療學、工程學、生物學等領域。賽福瑞家用超聲治療機屬於超聲波治療學的運用范疇。
(一)工程學方面的應用:水下定位與通訊、地下資源勘查等
(二)生物學方面的應用:剪切大分子、生物工程及處理種子等
(三)診斷學方面的應用:A型、B型、M型、D型、雙功及彩超等
(四)治療學方面的應用:理療、治癌、外科、體外碎石、牙科等
超聲波的特點:
1、超聲波在傳播時,方向性強,能量易於集中。
2、超聲波能在各種不同媒質中傳播,且可傳播足夠遠的距離。
3、超聲與傳聲媒質的相互作用適中,易於攜帶有關傳聲媒質狀態的信息(診斷或對傳聲媒質產生效應。(治療)
超聲波是一種波動形式,它可以作為探測與負載信息的載體或媒介(如B超等用作診斷);超聲波同時又是一種能量形式,當其強度超過一定值時,它就可以通過與傳播超聲波的媒質的相互作用,去影響,改變以致破壞後者的狀態,性質及結構(用作治療)。
超聲波的發展史:
一、國際方面:
自19世紀末到20世紀初,在物理學上發現了壓電效應與反壓電效應之後,人們解決了利用電子學技術產生超聲波的辦法,從此迅速揭開了發展與推廣超聲技術的歷史篇章。
1922年,德國出現了首例超聲波治療的發明專利。
1939年發表了有關超聲波治療取得臨床效果的文獻報道。
40年代末期超聲治療在歐美興起,直到1949年召開的第一次國際醫學超聲波學術會議上,才有了超聲治療方面的論文交流,為超聲治療學的發展奠定了基礎。1956年第二屆國際超聲醫學學術會議上已有許多論文發表,超聲治療進入了實用成熟階段。
二、國內方面:
國內在超聲治療領域起步稍晚,於20世紀50年代初才只有少數醫院開展超聲治療工作,從1950年首先在北京開始用800KHz頻率的超聲治療機治療多種疾病,至50年代開始逐步推廣,並有了國產儀器。公開的文獻報道始見於1957年。到了70年代有了各型國產超聲治療儀,超聲療法普及到全國各大型醫院。
40多年來,全國各大醫院已積累了相當數量的資料和比較豐富的臨床經驗。特別是20世紀80年代初出現的超聲體外機械波碎石術和超聲外科,是結石症治療史上的重大突破。如今已在國際范圍內推廣應用。高強度聚焦超聲無創外科,已使超聲治療在當代醫療技術中占據重要位置。而在21世紀(HIFU)超聲聚焦外科已被譽為是21世紀治療腫瘤的最新技術。
超聲波治病機理:

1.機械效應:超聲在介質中前進時所產生的效應。(超聲在介質中傳播是由反射而產生的機械效應)它可引起機體若干反應。超聲振動可引起組織細胞內物質運動,由於超聲的細微按摩,使細胞漿流動、細胞震盪、旋轉、摩擦、從而產生細胞按摩的作用,也稱為「內按摩」這是超聲波治療所獨有的特性,可以改變細胞膜的通透性,刺激細胞半透膜的彌散過程,促進新陳代謝、加速血液和淋巴循環、改善細胞缺血缺氧狀態,改善組織營養、改變蛋白合成率、提高再生機能等。使細胞內部結構發生變化,導致細胞的功能變化,使堅硬的結締組織延伸,松軟。
超聲波的機械作用可軟化組織,增強滲透,提高代謝,促進血液循環,刺激神經系統和細胞功能,因此具有超聲波獨特的治療意義。
2.溫熱效應:人體組織對超聲能量有比較大的吸收本領,因此當超聲波在人體組織中傳播過程中,其能量不斷地被組織吸收而變成熱量,其結果是組織的自身溫度升高。
產熱過程既是機械能在介質中轉變成熱能的能量轉換過程。即內生熱。超聲溫熱效應可增加血液循環,加速代謝,改善局部組織營養,增強酶活力。一般情況下,超聲波的熱作用以骨和結締組織為顯著,脂肪與血液為最少。
3.理化效應:超聲的機械效應和溫熱效應均可促發若干物理化學變化。實踐證明一些理化效應往往是上述效應的繼發效應。TS-C型治療機通過理化效應繼發出下列五大作用:
A.彌散作用:超聲波可以提高生物膜的通透性,超聲波作用後,細胞膜對鉀,鈣離子的通透性發生較強的改變。從而增強生物膜彌散過程,促進物質交換,加速代謝,改善組織營養。
B.觸變作用:超聲作用下,可使凝膠轉化為溶膠狀態。對肌肉,肌腱的軟化作用,以及對一些與組織缺水有關的病理改變。如類風濕性關節炎病變和關節、肌腱、韌帶的退行性病變的治療。
C.空化作用:空化形成,或保持穩定的單向振動,或繼發膨脹以致崩潰,細胞功能改變,細胞內鈣水平增高。成纖維細胞受激活,蛋白合成增加,血管通透性增加,血管形成加速,膠原張力增加。
D.聚合作用與解聚作用:水分子聚合是將多個相同或相似的分子合成一個較大的分子過程。大分子解聚,是將大分子的化學物變成小分子的過程。可使關節內增加水解酶和原酶活性增加。
E.消炎,修復細胞和分子:超聲作用下,可使組織PH值向鹼性方面發展。緩解炎症所伴有的局部酸中毒。超聲可影響血流量,產生致炎症作用,抑制並起到抗炎作用。使白細胞移動,促進血管生成。膠原合成及成熟。促進或抑制損傷的修復和癒合過程。從而達到對受損細胞組織進行清理、激活、修復的過程。

(摘自科學技術文獻出版社出版發行的《超聲醫學》、《實用超聲治療學》和《物理治療全書》):

8、肌肉骨超聲

肌骨超聲是近年來新興的超聲檢查技術,也可以稱為肌肉骨骼系統超聲。它能夠清楚地顯示肌肉,肌腱,韌帶,周圍神經等淺表軟組織結構及其發生的病變。比如如果有炎症或者是損傷,肌腱斷裂,風濕性關節炎等等,這些都可以得到准確的診斷,它可以和磁共振相媲美,能夠精細分辨肌肉淺表神經的解剖結構,現在對臨床提供了很大的幫助,一般來說肌骨超聲常規的費用是150元左右。

9、超聲波對身體有多大傷害?

超工作原理是利用聲波的物理原理,頻率>20000Hz為超聲波,醫用超聲頻率為1~15MHz。超聲的本質是聲波,即機械波,所以它沒有電離輻射的危害,目前仍未發現超聲檢查對人體產生過危害。

超聲對人體的生物效應,與超聲功率和照射時間有關。低功率超聲波,照射時間有限,不會產生明顯的生物效應。盡管高強度超聲(>5W/cm2)用來粉碎結石,破壞腫瘤組織,具有強大的機械功率作用,但診斷用超聲只是利用超聲作為一種信號,所需功率極小。
因此,多年來診斷用超聲一直被認為是很安全的。在國際規定的安全閥值條件下,未發現任何明顯副作用,包括對胚胎和早孕胎兒的不利影響。

盡管超聲檢查是十分安全的影像學檢查方法,在日常超聲診斷工作中仍宜採取謹慎態度。即採用最小輸出功率,減少檢查時間,避免在固定部位(尤其是眼部和早期胚胎)做長時間照射,最大限度地減少產生超聲照射可能引起地某些副作用。

10、照肌腱圖是屬於MRI嗎

屬於
磁共振成像是斷層成像的一種,它利用磁共振現象從人體中獲得電磁信號,並重建出人體信息。1946年斯坦福大學的Flelix Bloch和哈佛大學的Edward Purcell各自獨立的發現了核磁共振現象。磁共振成像技術正是基於這一物理現象。1972年Paul Lauterbur 發展了一套對核磁共振信號進行空間編碼的方法,這種方法可以重建出人體圖像。

MRI
磁共振成像技術與其它斷層成像技術(如CT)有一些共同點,比如它們都可以顯示某種物理量(如密度)在空間中的分布;同時也有它自身的特色,磁共振成像可以得到任何方向的斷層圖像,三維體圖像,甚至可以得到空間-波譜分布的四維圖像。

像PET和SPECT一樣,用於成像的磁共振信號直接來自於物體本身,也可以說,磁共振成像也是一種發射斷層成像。但與PET和SPECT不同的是磁共振成像不用注射放射性同位素就可成像。這一點也使磁共振成像技術更加安全。

從磁共振圖像中我們可以得到物質的多種物理特性參數,如質子密度,自旋-晶格馳豫時間T1,自旋-自旋馳豫時間T2,擴散系數,磁化系數,化學位移等等。對比其它成像技術(如CT 超聲 PET等)磁共振成像方式更加多樣,成像原理更加復雜,所得到信息也更加豐富。因此磁共振成像成為醫學影像中一個熱門的研究方向。

MR也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MR的檢查,另外價格比較昂貴、掃描時間相對較長,偽影也較CT多。

工作原理

核磁共振是一種物理現象,作為一種分析手段廣泛應用於物理、化學生物等領域,到1973年才將它用於醫學臨床檢測。為了避免與核醫學中放射成像混淆,把它稱為磁共振成像術(MR)。

MRI通過對靜磁場中的人體施加某種特定頻率的射頻脈沖,使人體中的氫質子受到激勵而發生磁共振現象。停止脈沖後,質子在弛豫過程中產生MR信號。通過對MR信號的接收、空間編碼和圖像重建等處理過程,即產生MR信號。

與超聲肌腱相關的內容