導航:首頁 > 骨腫瘤 > 骨腫瘤ct清楚還是核磁共振

骨腫瘤ct清楚還是核磁共振

發布時間:2020-10-01 07:23:03

1、背部和四肢關節骨痛,懷疑是骨腫瘤,請問檢查是做ECT好還是核磁共振好?急!謝謝!

做PET-CT好,較小的轉移可以發現.

2、核磁共振和CT有什麼區別嗎?哪個更好?

核磁共振和ct的區別是核磁共振的x光切片更多分割的范圍更細病灶定位更准確所以效果也更好價格也更貴。
但是根據檢查的部位和目的不同,臨床上並不需要所有疾病都做核磁共振。

3、醫院的核磁共振和CT到底有什麼區別?

對於X線、CT、B超、核磁共振(MRI)這些常用的影像學檢查,根本就傻傻分不清楚......今天,我們就把身體比作食物,通俗易懂的告訴你,這些檢查是如何發揮不同作用的!

X光像把麵包壓扁了看

X光會穿過人體,遇到被遮擋的部位,底片上不會曝光,洗片後這個部位就是白色的。

就像一片麵包或一塊棉花,看不到裡面的纖維紋理,但用手壓癟了會清晰一些。X光最大缺點是受制於深淺組織的影像相互重疊和隱藏,有時需要多次多角度拍攝X光片。

CT像把麵包切開看CT的檢查原理是X光會分層穿過人體,之後通過電腦計算後二次成像。

就像把一片麵包切成片來看。優點是可以分層看,經計算後可以顯示出更多的組織信息。B超的原理是用超聲波穿透人體,當聲波遇到人體組織時會產生反射波,通過計算反射波成像。就像挑西瓜一樣,邊敲邊看顯示病灶情況。

核磁共振機使用較強大的磁場,使人體中所有水分子磁場的磁力線方向一致,這時磁共振機的磁場突然消失,身體中水分子的磁力線方向,突然恢復到原來隨意排列的狀態。反復多次施加磁場又突然消失,核磁共振機會得到充分的數據並運算後成像。簡單說就相當於用手搖一搖,讓水分子振動起來,再平靜下來,感受一下裡面的振動。所以,核磁共振(MRI)也被戲說為是搖搖看的檢查。就診時,醫生常會開各種各樣的影像學檢查單:超聲、CT、核磁……不少患者會質疑醫生故意開高價檢查單。其實,醫生是依據不同病情選不同影像檢查的。

各種外傷,如果懷疑傷到了骨頭,優先選擇X光照片,檢查結果快速易得。若要進一步觀察,可以選擇CT。超聲、核磁對於骨皮髓質等看不大清,一般不選擇。

頸椎病、腰椎間盤突出等椎間盤疾病需要觀察椎間盤與相應的神經根,要想更好觀察這些軟組織,最優選擇就是核磁。同樣,對於關節、肌肉、脂肪組織檢查,核磁也是首選。

4、查股骨頭核磁共振和ct哪個更好

ct檢查主要是檢查骨頭,可以看見一部分的腰椎間盤。但是核磁共振強項是檢查軟組織。能多個剖面來檢查神經血管。

5、核磁共振和ct的區別

CT 主要是看實質性結構的比較多,MRI 看以脂肪等軟組織結構比較清晰,一般MRI多用於腦部,而且可以配合其他技術做多功能分析,但問題是價格昂貴,有心臟起搏器等體內磁鐵性物質禁忌,鈣化灶,骨,肺實質顯象不好,而CT比較常用,圖像也比較清楚,價錢也比較便宜,配合新技術,功能也越來越強大。

6、CT跟核磁共振有什麼區別?

CT與核磁共振(MRI)是兩種截然不同的檢查方法。MRI是Magnetic Resnane Iamge的簡稱,中文為磁共振成像。MRI是把人體放置在一個強大的磁場中,通過射頻脈沖激發人體內氫質子,發生核磁共振,然後接受質子發出的核磁共振信號,經過梯度場三個方向的定位,再經過計算機的運算,構成各方位的圖像。
CT由於X線球管和探測器是環繞人體某一部位旋轉,所以只能做人體橫斷面的掃描成像,而MRI可做橫斷、矢狀、冠狀和任意切面的成像。

核磁共振(MRl)與CT都屬於技術含量非常高的影像學檢查手段,兩者相比,核磁共振主要具有以下優點。

核磁共振能敏感地檢查出組織成分中水含量的變化,能顯示功能和新陳代謝過程等生理生化信息的變化,它使機體組織從單純的解剖顯像發展為解剖學與組織生化和物理學特性變化相結合的「化學性圖像」,為一些早期病變提供了診斷依據,常常比CT能更有效和更早地發現病變。它能非常清晰地顯示腦和脊髓的灰質和白質,故在神經系統疾病的診斷方面優於CT,對顱腦、脊柱和脊髓疾病的顯示優於CT,這是CT所無法比擬的;
核磁共振可根據需要直接顯示人體任意角度的切面像,可以直接作出橫斷面、矢狀面、冠狀面和各種斜面的體層圖像;而CT只能顯示與身體長軸相垂直的橫斷層像;
核磁共振有高於CT數倍的軟組織分辨能力,圖像中對於軟組織的對比度可以提高1—3個等級度,大功率的核磁共振機器拍攝的照片非常清晰,甚至可以看到組織內的細小血管;
核磁共振在儀器結構上不需要像CT那樣有較大的機械口轉動部件和一系列高精度的探測器,只要通過電子方法調節磁場梯度即可實現掃描;
核磁共振不會像CT那樣產生對人體有損傷的電離輻射,對機體沒有不良影響,甚至孕婦接受核磁共振檢查時對胎兒也無任何不良影響;
核磁共振有3個特性參數,而CT只有X射線束穿過生物組織的衰減一個物理參數,故核磁共振漏診率比CT低;
核磁共振不用造影劑就可得到很好的軟組織對比度,能顯示血管的結構,故對血管、腫塊、淋巴結和血管結構之間的相互鑒別有其獨到之處,而且還避免了造影劑可能引起的過敏反應;
核磁共振不會產生CT檢測中的骨性偽影,能使脊柱中的脊髓及神經根顯像清晰,還有可能檢查出由於缺血引起的組織損傷等等。
核磁共振幾乎適用於全身各系統的不同疾病,如腫瘤、炎症、創傷、退行性病變以及各種先天性疾病的檢查,在脊柱外科更有其廣泛的適應證,應用范圍大大超過CT檢查,診斷價值明顯優於CT。

核磁共振也存在不足之處,與CT相比主要其不足之處包括:成像時間較長,當前,全身成像15個斷層面需要13分鍾;空間解析度低,僅為2毫米,活動使解析度更低,故診斷心臟等活動性器官效果較差;顯示骨組織的能力比CT要差,在觀察頸椎骨刺、韌帶鈣化及椎管狹窄等骨組織的退變情況時,不如CT清楚,但在顯示這些骨組織退變後的改變對脊髓神經根的壓迫方面優於CT;由於鐵金屬的磁場反應,使帶有心臟起搏器的患者或體內有某些金屬的部位不能作核磁共振的檢查,如脊柱及其他部位內固定術後、人工關節術後、外科.手術使用縫合器以後、帶有金屬避孕環的婦女以及安裝有假牙等,以及其他體內存有金屬異物等情況者。不過,由於鈦金屬沒有磁場反應,目前在骨科內固定手術中正在逐步推廣的鈦金屬內固定物可以接受核磁共振檢查;安裝核磁共振須有特殊房間,必須防磁、防電干擾,對室內的溫度、濕度和冷卻系統也有特殊要求,要求溫度在20—25℃,上下相差不能超過1℃等;價格昂貴,現在一台應用抗磁系統的核磁共振機,價值近100萬美元,而一台超導磁系統的核磁共振機高達200萬美元左右;檢查費用昂貴,遠遠高於CT檢查的費用,一個部位的核磁共振檢查費在800—1300元,而CT僅180—600元;運轉維護費用高,一年約耗電40萬度,僅電費一項即需幾萬元人民幣,還需要液氦、液氮、重水和其他材料等。

綜上所述,盡管核磁共振檢查有不少優點,但也存在著程度不同的局限性。因此,不應對核磁共振檢查過分地依賴和迷信,應根據核磁共振的檢查特點、臨床要求及病人的不同情況合理選用,對每一幅核磁共振的圖像,都應仔細地聯系解剖病理和臨床,作客觀全面的分析。

7、CT與核磁共振的區別是什麼?性質一樣嗎?哪個更好?

在臨床上二者各有優劣,並不是說誰比誰好;比如核磁在神經系統,軟組織方面的檢查要比CT清晰,但CT在骨質結構檢查方面比核磁更好;在二者不相上下的檢查范圍內CT比MRI價格低,相當於1/2。 再次,核磁掃描切面的選擇方式可以是任意的,就比如你切一個蘿卜,你想怎麼切都行;但是CT只能做橫斷面成像,就是這個蘿卜你只能從一頭一片一片切到另一頭去;現在的多排螺旋CT因為切面層距可以很小,所以掃描後可以在計算機軟體下進行三維重建,在診斷骨骼疾病(如肋骨骨折)方面比拍片直觀的多。CT(Computed Tomography),即電子計算機斷層掃描,它是利用精確準直的X線束與靈敏度極高的探測器一同圍繞人體的某一部位作一個接一個的斷面掃描,每次掃描過程中由探測器接收穿過人體後的衰減X線信息,再由快速模 /數(A/D)轉換器將模擬量轉換成數字量,然後輸入電子計算機,經電子計算機高速計算,得出該層面各點的X線吸收系數值,用這些數據組成圖像的矩陣。再經圖像顯示器將不同的數據用不同的灰度等級顯示出來,這樣該斷面的解剖結構就可以清晰的顯示在監視器上,也可利用多幅相機或激光相機把圖像記錄在照片上。 MRI也就是核磁共振成像,英文全稱是:nuclear magnetic resonance imaging, MR是一種生物磁自旋成像技術,它是利用原子核自旋運動的特點,在外加磁場內,經射頻脈沖激後產生信號,用探測器檢測並輸入計算機,經過處理轉換在屏幕上顯示圖像。 MR也存在不足之處。它的空間解析度不及CT,帶有心臟起搏器的患者或有某些金屬異物的部位不能作MR的檢查,另外價格比較昂貴。磁共振成像是斷層成像的一種,它利用磁共振現象從人體中獲得電磁信號,並重建出人體信息。1946年斯坦福大學的Flelix Bloch和哈佛大學的Edward Purcell各自獨立的發現了核磁共振現象。磁共振成像技術正是基於這一物理現象。1972年Paul Lauterbur 發展了一套對核磁共振信號進行空間編碼的方法,這種方法可以重建出人體圖像。磁共振成像技術與其它斷層成像技術(如CT)有一些共同點,比如它們都可以顯示某種物理量(如密度)在空間中的分布;同時也有它自身的特色,磁共振成像可以得到任何方向的斷層圖像,三維體圖像,甚至可以得到空間-波譜分布的四維圖像。 檢查目的:顱腦及脊柱、脊髓病變,五官科疾病,心臟疾病,縱膈腫塊,骨關節和肌肉病變,子宮、卵巢、膀胱、前列腺、肝、腎、胰等部位的病變。優點:1.MRI對人體沒有損傷;2.MRI能獲得腦和脊髓的立體圖像,不像CT那樣一層一層地掃描而有可能漏掉病變部位;3.能診斷心臟病變,CT因掃描速度慢而難以勝任;4.對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT。缺點:1.和CT一樣,MRI也是影像診斷,很多病變單憑MRI仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;2.對肺部的檢查不優於X線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;3.對胃腸道的病變不如內窺鏡檢查;4.體內留有金屬物品者不宜接受MRI。5. 危重病人不能做6.妊娠3個月內的7.帶有心臟起搏器的

8、CT與核磁共振有何分別?

我先說幾句,CT成像是在X射線的基礎上運用計算機技術,使平面重疊的X像可以清晰一個平面一個平面的掃描.磁共振是原子核在強磁場中共振所得到的信號,然後經過圖象重建得到的,它可以在人體的各個平面成像.說白了,它的成像和掃描部位質子的多少有關.他們的區別主要是原理,設備,其成像特點,檢查技術,圖象的分析與診斷,及他們在臨床的應用.
CT的基本原理一、CT成像過程

X線成像是利用人體對X線的選擇性吸收原理,當X線透過人體後在熒光屏上或膠片上形成組織和器官的圖像,CT的成像也與之相仿。

CT掃描的過程是由高度準直的X線束環繞人體某一檢查部位作360度的橫斷面掃描的過程。檢查床平移時,X線從不同方向照射病人,穿過人體的X線束因有部分光子被人體吸收而發生衰減,未被吸收的光子穿透人體再經後準直由探測器接收。探測器接受了穿過人體以後的強弱不同的X線,轉換為自信號由數據採集系統(data acquisition system,DAS)進行採集。大量接收到模擬信號信息通過模數(A/D)轉換器轉換為數字信號輸入電子計算機進行處理運算。經過初步處理的成為採集的原始數據(raw data),原始數據經過捲曲、濾過處理,其後稱為濾過後的原始數據(6lteredrawdata)。由數模(D/A)轉換器通過不同的灰階在顯示屏上顯像從而獲得該部位橫斷面的解剖結構圖象,即CT橫斷面圖象。

因此,CT檢查得到的是反應人體組織結構分布的數字影象,從根本上克服了常規X線檢查圖像前後重疊的缺陷,使醫學影像診斷學檢查有了質的飛躍。

二、CT成像的基本原理

通常,探測器所接受到的射線信號的強弱,取決於該部位的人體截面內組織的密度。密度高的組織,例如骨骼吸收X線較多,探測器接收到的信號較弱;密度較低的組織,例如脂肪、空腔臟器等吸收X線較少,探測器獲得的信號較強。這種不同組織對X線吸收值不同的性質可用組織的吸收系數μ來表示,所以探測器所接收到的信號強弱所反映的是人體組織不同的μ值。而CT正是利用X線穿透人體後的衰減特性作為其診斷疾病的依據。

X線穿透人體後的衰減遵守指數衰減規律I=I0e-μd。

式中:I為通過人體吸收後衰減的X線強度;I0為入射X線強度;μ為接收X線照射組織的線性吸收系數;d為受檢部位人體組織的厚度。

通過電子計算機運算列出人體組織受檢層面的吸收系數,並將之分布在合成圖象的柵狀陣列即矩陣的方格(陣元)內。矩陣上每個陣元相當於重建圖象上的一個圖象點,稱為像素(pixel)。CT的成像過程就是求出每個像素的衰減系數的過程。如果像素越小、探測器數目越多,計算機所測出的衰減系數就越多、越精確,重建出的圖象也就越清晰。目前,CT機的矩陣多為256×256,512×512,其乘積即為每個矩陣所包含的像素數
核磁共振成像
維基百科,自由的百科全書
跳轉到: 導航, 搜索

人腦縱切面的核磁共振成像核磁共振成像(Nuclear Magnetic Resonance Imaging,簡稱NMRI),又稱自旋成像(spin imaging),也稱磁共振成像、磁振造影(Magnetic Resonance Imaging,簡稱MRI),是利用核磁共振(nuclear magnetic resonnance,簡稱NMR)原理,依據所釋放的能量在物質內部不同結構環境中不同的衰減,通過外加梯度磁場檢測所發射出的電磁波,即可得知構成這一物體原子核的位置和種類,據此可以繪製成物體內部的結構圖像。

將這種技術用於人體內部結構的成像,就產生出一種革命性的醫學診斷工具。快速變化的梯度磁場的應用,大大加快了核磁共振成像的速度,使該技術在臨床診斷、科學研究的應用成為現實,極大地推動了醫學、神經生理學和認知神經科學的迅速發展。

從核磁共振現象發現到MRI技術成熟這幾十年期間,有關核磁共振的研究領域曾在三個領域(物理、化學、生理學或醫學)內獲得了6次諾貝爾獎,足以說明此領域及其衍生技術的重要性。

目錄 [隱藏]
1 物理原理
1.1 原理概述
1.2 數學運算
2 系統組成
2.1 NMR實驗裝置
2.2 MRI系統的組成
2.2.1 磁鐵系統
2.2.2 射頻系統
2.2.3 計算機圖像重建系統
2.3 MRI的基本方法
3 技術應用
3.1 MRI在醫學上的應用
3.1.1 原理概述
3.1.2 磁共振成像的優點
3.1.3 MRI的缺點及可能存在的危害
3.2 MRI在化學領域的應用
3.3 磁共振成像的其他進展
4 諾貝爾獲獎者的貢獻
5 未來展望
6 相關條目
6.1 磁化准備
6.2 取像方法
6.3 醫學生理性應用
7 參考文獻

[編輯]
物理原理

通過一個磁共振成像掃描人類大腦獲得的一個連續切片的動畫,由頭頂開始,一直到基部。[編輯]
原理概述
核磁共振成像是隨著計算機技術、電子電路技術、超導體技術的發展而迅速發展起來的一種生物磁學核自旋成像技術。醫生考慮到患者對「核」的恐懼心理,故常將這門技術稱為磁共振成像。它是利用磁場與射頻脈沖使人體組織內進動的氫核(即H+)發生章動產生射頻信號,經計算機處理而成像的。

原子核在進動中,吸收與原子核進動頻率相同的射頻脈沖,即外加交變磁場的頻率等於拉莫頻率,原子核就發生共振吸收,去掉射頻脈沖之後,原子核磁矩又把所吸收的能量中的一部分以電磁波的形式發射出來,稱為共振發射。共振吸收和共振發射的過程叫做「核磁共振」。

核磁共振成像的「核」指的是氫原子核,因為人體的約70%是由水組成的,MRI即依賴水中氫原子。當把物體放置在磁場中,用適當的電磁波照射它,使之共振,然後分析它釋放的電磁波,就可以得知構成這一物體的原子核的位置和種類,據此可以繪製成物體內部的精確立體圖像。

[編輯]
數學運算
原子核帶正電並有自旋運動,其自旋運動必將產生磁矩,稱為核磁矩。研究表明,核磁矩μ與原子核的自旋角動量S 成正比,即

式中γ 為比例系數,稱為原子核的旋磁比。在外磁場中,原子核自旋角動量的空間取向是量子化的,它在外磁場方向上的投影值可表示為

m為核自旋量子數。依據核磁矩與自旋角動量的關系,核磁矩在外磁場中的取向也是量子化的,它在磁場方向上的投影值為

對於不同的核,m分別取整數或半整數。在外磁場中,具有磁矩的原子核具有相應的能量,其數值可表示為

式中B為磁感應強度。可見,原子核在外磁場中的能量也是量子化的。由於磁矩和磁場的相互作用,自旋能量分裂成一系列分立的能級,相鄰的兩個能級之差ΔE = γhB。用頻率適當的電磁輻射照射原子核,如果電磁輻射光子能量hν恰好為兩相鄰核能級之差ΔE,則原子核就會吸收這個光子,發生核磁共振的頻率條件是:

式中ν為頻率,ω為角頻率。對於確定的核,旋磁比γ可被精確地測定。可見,通過測定核磁共振時輻射場的頻率ν,就能確定磁感應強度;反之,若已知磁感應強度,即可確定核的共振頻率。

[編輯]
系統組成
[編輯]
NMR實驗裝置
採用調節頻率的方法來達到核磁共振。由線圈向樣品發射電磁波,調制振盪器的作用是使射頻電磁波的頻率在樣品共振頻率附近連續變化。當頻率正好與核磁共振頻率吻合時,射頻振盪器的輸出就會出現一個吸收峰,這可以在示波器上顯示出來,同時由頻率計即刻讀出這時的共振頻率值。核磁共振譜儀是專門用於觀測核磁共振的儀器,主要由磁鐵、探頭和譜儀三大部分組成。磁鐵的功用是產生一個恆定的磁場;探頭置於磁極之間,用於探測核磁共振信號;譜儀是將共振信號放大處理並顯示和記錄下來。

[編輯]
MRI系統的組成
[編輯]
磁鐵系統
靜磁場:當前臨床所用超導磁鐵,磁場強度有0.5到4.0T,常見的為1.5T和3.0T,另有勻磁線圈(shim coil)協助達到高均勻度。
梯度場:用來產生並控制磁場中的梯度,以實現NMR信號的空間編碼。這個系統有三組線圈,產生x、y、z三個方向的梯度場,線圈組的磁場疊加起來,可得到任意方向的梯度場。
[編輯]
射頻系統
射頻(RF)發生器:產生短而強的射頻場,以脈沖方式加到樣品上,使樣品中的氫核產生NMR現象。
射頻(RF)接收器:接收NMR信號,放大後進入圖像處理系統。
[編輯]
計算機圖像重建系統
由射頻接收器送來的信號經A/D轉換器,把模擬信號轉換成數學信號,根據與觀察層面各體素的對應關系,經計算機處理,得出層面圖像數據,再經D/A轉換器,加到圖像顯示器上,按NMR的大小,用不同的灰度等級顯示出欲觀察層面的圖像。

[編輯]
MRI的基本方法
選片梯度場Gz
相編碼和頻率編碼
圖像重建
[編輯]
技術應用

3D MRI[編輯]
MRI在醫學上的應用
[編輯]
原理概述
氫核是人體成像的首選核種:人體各種組織含有大量的水和碳氫化合物,所以氫核的核磁共振靈活度高、信號強,這是人們首選氫核作為人體成像元素的原因。NMR信號強度與樣品中氫核密度有關,人體中各種組織間含水比例不同,即含氫核數的多少不同,則NMR信號強度有差異,利用這種差異作為特徵量,把各種組織分開,這就是氫核密度的核磁共振圖像。人體不同組織之間、正常組織與該組織中的病變組織之間氫核密度、弛豫時間T1、T2三個參數的差異,是MRI用於臨床診斷最主要的物理基礎。

當施加一射頻脈沖信號時,氫核能態發生變化,射頻過後,氫核返回初始能態,共振產生的電磁波便發射出來。原子核振動的微小差別可以被精確地檢測到,經過進一步的計算機處理,即可能獲得反應組織化學結構組成的三維圖像,從中我們可以獲得包括組織中水分差異以及水分子運動的信息。這樣,病理變化就能被記錄下來。

人體2/3的重量為水分,如此高的比例正是磁共振成像技術能被廣泛應用於醫學診斷的基礎。人體內器官和組織中的水分並不相同,很多疾病的病理過程會導致水分形態的變化,即可由磁共振圖像反應出來。

MRI所獲得的圖像非常清晰精細,大大提高了醫生的診斷效率,避免了剖胸或剖腹探查診斷的手術。由於MRI不使用對人體有害的X射線和易引起過敏反應的造影劑,因此對人體沒有損害。MRI可對人體各部位多角度、多平面成像,其分辨力高,能更客觀更具體地顯示人體內的解剖組織及相鄰關系,對病灶能更好地進行定位定性。對全身各系統疾病的診斷,尤其是早期腫瘤的診斷有很大的價值。

[編輯]
磁共振成像的優點
與1901年獲得諾貝爾物理學獎的普通X射線或1979年獲得諾貝爾醫學獎的計算機層析成像(computerized tomography, CT)相比,磁共振成像的最大優點是它是目前少有的對人體沒有任何傷害的安全、快速、准確的臨床診斷方法。如今全球每年至少有6000萬病例利用核磁共振成像技術進行檢查。具體說來有以下幾點:

對人體沒有游離輻射損傷;
各種參數都可以用來成像,多個成像參數能提供豐富的診斷信息,這使得醫療診斷和對人體內代謝和功能的研究方便、有效。例如肝炎和肝硬化的T1值變大,而肝癌的T1值更大,作T1加權圖像,可區別肝部良性腫瘤與惡性腫瘤;
通過調節磁場可自由選擇所需剖面。能得到其它成像技術所不能接近或難以接近部位的圖像。對於椎間盤和脊髓,可作矢狀面、冠狀面、橫斷面成像,可以看到神經根、脊髓和神經節等。能獲得腦和脊髓的立體圖像,不像CT(只能獲取與人體長軸垂直的剖面圖)那樣一層一層地掃描而有可能漏掉病變部位;
能診斷心臟病變,CT因掃描速度慢而難以勝任;
對軟組織有極好的分辨力。對膀胱、直腸、子宮、陰道、骨、關節、肌肉等部位的檢查優於CT;
原則上所有自旋不為零的核元素都可以用以成像,例如氫(1H)、碳(13C)、氮(14N和15N)、磷(31P)等。

人類腹部冠狀切面磁共振影像[編輯]
MRI的缺點及可能存在的危害
雖然MRI對患者沒有致命性的損傷,但還是給患者帶來了一些不適感。在MRI診斷前應當採取必要的措施,把這種負面影響降到最低限度。其缺點主要有:

和CT一樣,MRI也是解剖性影像診斷,很多病變單憑核磁共振檢查仍難以確診,不像內窺鏡可同時獲得影像和病理兩方面的診斷;
對肺部的檢查不優於X射線或CT檢查,對肝臟、胰腺、腎上腺、前列腺的檢查不比CT優越,但費用要高昂得多;
對胃腸道的病變不如內窺鏡檢查;
掃描時間長,空間分辨力不夠理想;
由於強磁場的原因,MRI對諸如體內有磁金屬或起搏器的特殊病人卻不能適用。
MRI系統可能對人體造成傷害的因素主要包括以下方面:

強靜磁場:在有鐵磁性物質存在的情況下,不論是埋植在患者體內還是在磁場范圍內,都可能是危險因素;
隨時間變化的梯度場:可在受試者體內誘導產生電場而興奮神經或肌肉。外周神經興奮是梯度場安全的上限指標。在足夠強度下,可以產生外周神經興奮(如刺痛或叩擊感),甚至引起心臟興奮或心室振顫;
射頻場(RF)的致熱效應:在MRI聚焦或測量過程中所用到的大角度射頻場發射,其電磁能量在患者組織內轉化成熱能,使組織溫度升高。RF的致熱效應需要進一步探討,臨床掃瞄器對於射頻能量有所謂「特定吸收率」(specific absorption rate, SAR)的限制;
雜訊:MRI運行過程中產生的各種雜訊,可能使某些患者的聽力受到損傷;
造影劑的毒副作用:目前使用的造影劑主要為含釓的化合物,副作用發生率在2%-4%。
[編輯]
MRI在化學領域的應用
MRI在化學領域的應用沒有醫學領域那麼廣泛,主要是因為技術上的難題及成像材料上的困難,目前主要應用於以下幾個方面:

在高分子化學領域,如碳纖維增強環氧樹脂的研究、固態反應的空間有向性研究、聚合物中溶劑擴散的研究、聚合物硫化及彈性體的均勻性研究等;
在金屬陶瓷中,通過對多孔結構的研究來檢測陶瓷製品中存在的砂眼;
在火箭燃料中,用於探測固體燃料中的缺陷以及填充物、增塑劑和推進劑的分布情況;
在石油化學方面,主要側重於研究流體在岩石中的分布狀態和流通性以及對油藏描述與強化採油機理的研究。
[編輯]
磁共振成像的其他進展
核磁共振分析技術是通過核磁共振譜線特徵參數(如譜線寬度、譜線輪廓形狀、譜線面積、譜線位置等)的測定來分析物質的分子結構與性質。它可以不破壞被測樣品的內部結構,是一種完全無損的檢測方法。同時,它具有非常高的分辨本領和精確度,而且可以用於測量的核也比較多,所有這些都優於其它測量方法。因此,核磁共振技術在物理、化學、醫療、石油化工、考古等方面獲得了廣泛的應用。

磁共振顯微術(MR microscopy, MRM/μMRI)是MRI技術中稍微晚一些發展起來的技術,MRM最高空間解析度是4μm,已經可以接近一般光學顯微鏡像的水平。MRM已經非常普遍地用作疾病和葯物的動物模型研究。
活體磁共振能譜(in vivo MR spectroscopy, MRS)能夠測定動物或人體某一指定部位的NMR譜,從而直接辨認和分析其中的化學成分。
[編輯]
諾貝爾獲獎者的貢獻
2003年10月6日,瑞典卡羅林斯卡醫學院宣布,2003年諾貝爾生理學或醫學獎授予美國化學家保羅·勞特布爾(Paul C. Lauterbur)和英國物理學家彼得·曼斯菲爾德(Peter Mansfield),以表彰他們在醫學診斷和研究領域內所使用的核磁共振成像技術領域的突破性成就。

勞特布爾的貢獻是,在主磁場內附加一個不均勻的磁場,把梯度引入磁場中,從而創造了一種可視的用其他技術手段卻看不到的物質內部結構的二維結構圖像。他描述了怎樣把梯度磁體添加到主磁體中,然後能看到沉浸在重水中的裝有普通水的試管的交叉截面。除此之外沒有其他圖像技術可以在普通水和重水之間區分圖像。通過引進梯度磁場,可以逐點改變核磁共振電磁波頻率,通過對發射出的電磁波的分析,可以確定其信號來源。

曼斯菲爾德進一步發展了有關在穩定磁場中使用附加的梯度磁場理論,推動了其實際應用。他發現磁共振信號的數學分析方法,為該方法從理論走向應用奠定了基礎。這使得10年後磁共振成像成為臨床診斷的一種現實可行的方法。他利用磁場中的梯度更為精確地顯示共振中的差異。他證明,如何有效而迅速地分析探測到的信號,並且把它們轉化成圖像。曼斯菲爾德還提出了極快速的梯度變化可以獲得瞬間即逝的圖像,即平面回波掃描成像(echo-planar imaging, EPI)技術,成為20世紀90年代開始蓬勃興起的功能磁共振成像(functional MRI, fMRI)研究的主要手段。

雷蒙德·達馬蒂安的「用於癌組織檢測的設備和方法」值得一提的是,2003年諾貝爾物理學獎獲得者們在超導體和超流體理論上做出的開創性貢獻,為獲得2003年度諾貝爾生理學或醫學獎的兩位科學家開發核磁共振掃描儀提供了理論基礎,為核磁共振成像技術鋪平了道路。由於他們的理論工作,核磁共振成像技術才取得了突破,使人體內部器官高清晰度的圖像成為可能。

此外,在2003年10月10日的《紐約時報》和《華盛頓郵報》上,同時出現了佛納(Fonar)公司的一則整版廣告:「雷蒙德·達馬蒂安(Raymond Damadian),應當與彼得·曼斯菲爾德和保羅·勞特布爾分享2003年諾貝爾生理學或醫學獎。沒有他,就沒有核磁共振成像技術。」指責諾貝爾獎委員會「篡改歷史」而引起廣泛爭議。事實上,對MRI的發明權歸屬問題已爭論了許多年,而且爭得頗為激烈。而在學界看來,達馬蒂安更多是一個生意人,而不是科學家。

[編輯]
未來展望
人腦是如何思維的,一直是個謎。而且是科學家們關注的重要課題。而利用MRI的腦功能成像則有助於我們在活體和整體水平上研究人的思維。其中,關於盲童的手能否代替眼睛的研究,是一個很好的樣本。正常人能見到藍天碧水,然後在大腦里構成圖像,形成意境,而從未見過世界的盲童,用手也能摸文字,文字告訴他大千世界,盲童是否也能「看」到呢?專家通過功能性MRI,掃描正常和盲童的大腦,發現盲童也會像正常人一樣,在大腦的視皮質部有很好的激活區。由此可以初步得出結論,盲童通過認知教育,手是可以代替眼睛「看」到外面世界的。

快速掃描技術的研究與應用,將使經典MRI成像方法掃描病人的時間由幾分鍾、十幾分鍾縮短至幾毫秒,使因器官運動對圖像造成的影響忽略不計;MRI血流成像,利用流空效應使MRI圖像上把血管的形態鮮明地呈現出來,使測量血管中血液的流向和流速成為可能;MRI波譜分析可利用高磁場實現人體局部組織的波譜分析技術,從而增加幫助診斷的信息;腦功能成像,利用高磁場共振成像研究腦的功能及其發生機制是腦科學中最重要的課題。有理由相信,MRI將發展成為思維閱讀器。

20世紀中葉至今,信息技術和生命科學是發展最活躍的兩個領域,專家相信,作為這兩者結合物的MRI技術,繼續向微觀和功能檢查上發展,對揭示生命的奧秘將發揮更大的作用。

[編輯]
相關條目
核磁共振
射頻
射頻線圈
梯度磁場
[編輯]
磁化准備
反轉回復(inversion recovery)
飽和回覆(saturation recovery)
驅動平衡(driven equilibrium)
[編輯]
取像方法
自旋迴波(spin echo)
梯度回波(gradient echo)
平行成像(parallel imaging)
面回波成像(echo-planar imaging, EPI)
定常態自由進動成像(steady-state free precession imaging, SSFP)
[編輯]
醫學生理性應用
磁振血管攝影(MR angiography)
磁振膽胰攝影(MR cholangiopancreatogram, MRCP)
擴散權重影像(diffusion-weighted image)
擴散張量影像(diffusion tensor image)
灌流權重影像(perfusion-weighted image)
功能性磁共振成像(functional MRI, fMRI)
[編輯]
參考文獻
傅傑青〈核磁共振——獲得諾貝爾獎次數最多的一個科學專題〉《自然雜志》, 2003, (06):357-261
別業廣、呂樺〈再談核磁共振在醫學方面的應用〉《物理與工程》, 2004, (02):34, 61
金永君、艾延寶〈核磁共振技術及應用〉《物理與工程》, 2002, (01):47-48, 50
劉東華、李顯耀、孫朝暉〈核磁共振成像〉《大學物理》, 1997, (10):36-39, 29
阮萍〈核磁共振成像及其醫學應用〉《廣西物理》, 1999, (02):50-53, 28
Lauterbur P C Nature, 1973, 242:190
黃衛華〈走近核磁共振〉《醫葯與保健》, 2004, (03):15
葉朝輝〈磁共振成像新進展〉《物理》, 2004, (01):12-17
田建廣、劉買利、夏照帆、葉朝輝〈磁共振成像的安全性〉《波譜學雜志》, 2002, (06):505-511
蔣子江〈核磁共振成像NMRI在化學領域中的應用〉《化學世界》, 1995, (11):563-565
樊慶福〈核磁共振成像與諾貝爾獎〉《上海生物醫學工程》, 2003, (04):封三

與骨腫瘤ct清楚還是核磁共振相關的內容