1、核酸的功能是什么
核酸是由许多核苷酸聚合成的生物大分子化合物,为生命的最基本物质之一。核酸广泛存在于所有动植物细胞、微生物体内,生物体内的核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸(简称RNA)和脱氧核糖核酸(简称DNA)。DNA是储存、复制和传递遗传信息的主要物质基础。
RNA在蛋白质合成过程中起着重要作用——其中转运核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。
核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病患者则是DNA分子上缺乏产生促黑色素生成的酪氨酸酶的基因所致。
肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物。
(1)核酸的作用扩展资料:
核酸的发现
1869年,F.Miescher从脓细胞中提取到一种富含磷元素的酸性化合物,因存在于细胞核中而将它命名为“核质”(nuclein)。但核酸(nucleic acids)这一名词在Miescher发现“核质”20年后才被正式启用,当时已能提取不含蛋白质的核酸制品。早期的研究仅将核酸看成是细胞中的一般化学成分,没有人注意到它在生物体内有什么功能这样的重要问题。
DNA遗传物质
1944年,Avery等为了寻找导致细菌转化的原因,他们发现从S 型肺炎球菌中提取的DNA与R型肺炎球菌混合后,能使某些R型菌转化为S型菌,且转化率与DNA纯度呈正相关,若将DNA预先用DNA酶降解,转化就不发生。结论是:S型菌的DNA将其遗传特性传给了R型菌,DNA就是遗传物质。从此核酸是遗传物质的重要地位才被确立,人们把对遗传物质的注意力从蛋白质移到了核酸上。
2、核酸对我们的身体起到了什么样的作用?
核酸对人体肯定有非常大的好处,核酸就像水一样,是组成我们生命的基本物质。水和核酸都是我们人体不可或缺的物质。人衰老的原因就是因为核酸不足,才会导致细胞发生萎缩,发生变质。所以核酸是可以预防人体衰老的,多食用核酸食物不仅能改善皮肤。还能够增强我们的免疫功能。因为所有蛋白质中,都由核酸组成。而蛋白质又是形成细胞必不可少的物质。
我们可以通过补充划算,就可以防止人体衰老。要多食用一些新鲜的海鲜,牛肉,豆类制品。这些食物里面都含着丰富的核酸,能够让自己美容养颜哦。还能够调节人体中的机能,促进我们人体地发育。小孩子多食用这类食物,可以更快地长高高。老人家多吃这类食物,可以提神醒脑,增强记忆力。青年人多食用这类食物可以强健体魄,身体棒棒哒。
当然市面上还有补充核酸的药物,但我觉得直接通过服用核酸这类的药物,并不会对人体产生很大的效果。直接摄入这种类似于基因组成的物质,个人觉得是不太可能了。So我们不能依赖这样的药物,还是通过其他途径来补充。是药三分毒,谁都知道。
经过我这一番解答,你是不是对于核酸有更深的认识?核酸的确是非常重要的物质,不仅仅可以预防衰老。还能预防某些疾病,是人体不可缺少的一部分,它的重要性我就不再强调了。
3、核酸对人体有什么好处??
核酸、蛋白质谁更“牛”?
一般人都知道,生命是蛋白质存在的形式,蛋白质是生命的基础。在发现核酸前,这句话是 对的,但当核酸被发现后,应该说最本质的生命物质是核酸,或是把上述的这句话更正为蛋白体是生命的基础。按照现代生物学的观点,蛋白体是包括核酸和蛋白质的生物大分子。
核酸在生命中为什么比蛋白质更重要呢?因为生命的重要性是能自我复制,而核酸就能够自 我复制。蛋白质的复制是根据核酸所发出的指令,使氨基酸根据其指定的种类进行合成,然后再按指定的顺序排列成所需要复制的蛋白质。世界上各种有生命的物质都含有蛋白体,蛋 白体中有核酸和蛋白质,至今还没有发现有蛋白质而没有核酸的生命。但在有生命的病毒研究中,却发现病毒以核酸为主体,蛋白质和脂肪以及脂蛋白等只不过充作其外壳,作为与外 界环境的界限而已,当它钻入寄生细胞繁殖子代时,把外壳留在细胞外,只有核酸进入细胞内 ,并使细胞在核酸控制下为其合成子代的病毒。这种现象,美国科学家比喻为人和汽车的关 系。即把核酸比为人,蛋白质比作汽车,入驾驶汽车到处跑,外表上看,人车一体是有生命运动的东西,而真正的生命是人,汽车只是由人制造的载入的外壳。近来科学家还发现了一 种类病毒,是能繁殖子代的有生命物体,其中只有核酸而没蛋白质,可见核酸是真正的生命物质。
因此我国1996年最新出版的《人体生理学》改变了旧教科书中只提蛋白质是生命基础的缺陷 ,明确提出:“蛋白质和核酸是一切生命活动的物质基础。”
然而,多少年来,人们在一味追求蛋白质、维生素、微量元素等营养时,却把最重要的角色 ——核酸忘却了,这不能不说是人类生命史上的一大遗憾。
没有核酸,就没有蛋白,也就没有生命。
人造核酸可用于治疗白血病
日本工业技术院产业技术融合领域研究所在8月3日出版的《自然》杂志上发表论文称,已开发出了治疗白血病的人造核酸。这种人造核酸就像一把剪刀,可发现引起白血病的遗传基因并将其剪除。科研小组的成员、东京大学研究生院教授多比良和诚根据动物实验结果认为,这种人造核酸将来有望成为治疗白血病的主要药物。
这次研究的对象是慢性骨髓性白血病(MCL),患者的异常遗传因子是由两个正常的遗传因子连接而成的,新开发的人造核酸可以发现这种变异遗传基因并将其切断。科学家过去也发现过能找到特定的遗传因子序列并将其切断的分子,但在切断特定遗传因子序列的同时往往对正常细胞造成伤害。而新开发出的核酸只在发现异常遗传因子时才被激活,平时则潜伏不动。
科研小组用人体白血病细胞进行了动物实验。他们将可与人造核酸反应的细胞和不可与人造核酸反应的细胞分别注射到8只实验鼠的体内。移植后第13周时,不与人造核酸反应的细胞全部死亡,而与人造核酸反应的细胞全部存活,证明人造核酸在生物体内十分有效。
科研小组说,此人造核酸的临床应用尚有诸多问题要解决,将来很可能是把患者的骨髓细胞抽出来,经人造核酸处理后,再把正常细胞的骨髓输回患者体内。
由许多核苷酸聚合而成的生物大分子化合物,为生命的最基本物质之一。最早由米歇尔于1868年在脓细胞中发现和分离出来。核酸广泛存在于所有动物、植物细胞、微生物内、生物体内核酸常与蛋白质结合形成核蛋白。不同的核酸,其化学组成、核苷酸排列顺序等不同。根据化学组成不同,核酸可分为核糖核酸,简称RNA和脱氧核糖核酸,简称DNA。DNA是储存、复制和传递遗传信息的主要物质基础,RNA在蛋白质牲合成过程中起着重要作用,其中转移核糖核酸,简称tRNA,起着携带和转移活化氨基酸的作用;信使核糖核酸,简称mRNA,是合成蛋白质的模板;核糖体的核糖核酸,简称rRNA,是细胞合成蛋白质的主要场所。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
核酸在实践应用方面有极重要的作用,现已发现近2000种遗传性疾病都和DNA结构有关。如人类镰刀形红血细胞贫血症是由于患者的血红蛋白分子中一个氨基酸的遗传密码发生了改变,白化病毒者则是DNA分子上缺乏产生促黑色素生成的酷氨酸酶的基因所致。肿瘤的发生、病毒的感染、射线对机体的作用等都与核酸有关。70年代以来兴起的遗传工程,使人们可用人工方法改组DNA,从而有可能创造出新型的生物品种。如应用遗传工程方法已能使大肠杆菌产生胰岛素、干扰素等珍贵的生化药物
4、核酸有什么作用
核酸也称多聚核苷酸,是由许多个核苷酸聚合而成的生物大分子,核苷酸是由含氮的碱基、核糖或脱氧核糖、磷酸三种分子连接而成。碱基与糖通过糖苷键连接成核苷,核苷与磷酸以酯键连接成核苷酸。核苷酸是生物体内一类重要含氮化合物,是各种核酸的基本组成单位。根据核酸所含戊糖的不同,可分为核糖核酸(RNA)和脱氧核糖核酸(DNA)二种。核酸不但是一切生物细胞的基本成分,还对生物体的生长、发育、繁殖、遗传及变异等重大生命现象起主宰作用。它在生物科学的地位,可用“没有核酸就没有生命”这句话来概括。饮食核酸的营养保健作用如下:1.饮食核酸与免疫 ‘从核酸对机体各系统的影响来看,免疫系统是最敏感也是最直接受影响的系统。实验表明,核酸是维持机体正常免疫功能和免疫系统生长代谢的必需营养物质。2.饮食核酸与衰老和内分泌衰老是机体各组织器官的退行性变化,代谢性、退行性疾病的发生和发展与体内过氧化脂质含量高度正相关。饮食核酸能增加血浆单不饱和脂肪酸和co-3、¨6系列多不饱和脂肪酸的含量,多不饱和脂肪酸的增加可提高机体对抗自由基的能力。饮食核酸作为使遗传物质活泼代谢的原料,具有极强的抗生物氧化、消除体内自由基和全面增强免疫功能及性激素分泌的作用,因此在延缓衰老方面优势显著。3.饮食核酸与增殖细胞饮食中补加核酸有助于肝脏再生和受损伤的小肠恢复功能,饮食核酸是维持肝脏处于正常生理状态的必需营养物质。血液中的红细胞、白细胞、血小板和血浆蛋白等也都是代谢较快的增殖细胞系,加之它们中的大多数均无从头合成核酸的能力,因此它们的代谢和功能也都需要充足的核酸营养。再生障碍性贫血和抗癌药物、放疗、化疗等引起的贫血,即缺铁性贫血之外的贫血均需补充核酸营养,以改善骨髓造血功能和血液成分的代谢活力。4.饮食核酸与癌症人体每日约有数百万个癌状细胞出现,它们几乎全部被机体的免疫监视系统和核酸、维生素等食物成分,在形成大的癌细胞克隆前排除掉。因此在日常生活中尽量避免致癌因子的作用,增加核酸等防癌因素的作用非常必要。5.饮食核酸与痴呆等神经障碍食物核酸提取物对痴呆症状的改善非常令人鼓舞。老年痴呆患者脑内神经纤维变化多的部位,RNA和蛋白质合成显著减少,因此发生记忆障碍。6.饮食核酸与循环系统核酸营养对循环系统的作用是抑制过氧化脂质的形成,抑制胆固醇的生成,扩张血管,改善血流,纠正心肌代偿不良,促进血管壁再生,抑制血小板凝集,因此核酸被认为对脑血栓、心肌梗死、高血压和动脉粥样硬化症有较好的营养保健作用。7、饮食核酸与糖尿病非胰岛素依赖性糖尿病与生活方式和运动不足关系密切,目前尚无特效疗法,饮食疗法常常被应用于这类患者。如果在普通的饮食疗法的基础上,再加上核酸饮食,将收到更好的效果。除上述作用外,饮食核酸还有以下作用:减肥,提高机体对环境变化的耐受力,显著的抗疲劳、增强机体对冷热的抵抗力、促进摄人氧气的利用,促进小鼠生殖系统的发育等。对于婴儿、迅速成长期的孩子、老年体弱多病、全身感染、外伤手术者、肝功能不全以及白细胞、T细胞、淋巴细胞降低人群等,可以额外补充核酸类物质。世界卫生组织规定,每天膳食中核酸的量不大于2克,扣除食物中的核酸摄入量,每天补充小于1.5克核酸是合适的。食物中,鱼类等海产品富含核酸,此外动物肝脏、脑、心、瘦肉,豆类及豆制品,笋,波菜,蘑菇,木耳,花粉,酵母,香蕉,葡萄,胡萝卜,番茄,苹果,桔子等,含核酸也较丰富。核酸产品有核酸调味品、食品添加剂及保健食品。
5、核酸的功能
核酸的功能:
(1)维持机体正常免疫
从核酸对机体各系统的影响来看,免疫系统是最敏感也是最直接受影响的系统。尽管体内可合成核酸,但无核苷酸饮食或低核苷酸饮食配方饲喂的实验动物,其免疫功能低下,条件致病菌就可使其感染。
(2)抗生物氧化
饮食核酸能增加血浆单不饱和脂肪酸多不饱和脂肪酸的含量,可提高机体对抗自由基的能力,对肝、脑组织增龄性形态学改变有良好的改善作用,同时可显著提高性激素分泌水平。
(3)促进细胞增殖分化
(4)影响生物合成
提供满足组织增长所需求的核酸水平,影响着一些组织细胞的RNA含量和增殖细胞DNA水平。
(5)影响其它营养素的吸收与利用
饮食核酸对三大营养要素的吸收和利用起着调节作用。
(7)饮食核酸与放疗、化疗和药物损伤
饮食核酸对抗癌剂、放疗和化疗药物造成的骨髓功能低下、脱发、贫血等快速增殖组织的损伤类副作用有明显的抑制作用,使抗癌药物充分发挥作用,而被作为癌症的辅助疗法。
(8)饮食核酸与痴呆等神经障碍
在大鼠实验中,如脑内注射RNA合成阻断剂,则该大鼠所学会的记忆的东西在5小时后丧失,但如果注射RNA合成阻断剂的同时注射拮抗阻断剂的物质,这种记忆丧失就不发生。
拓展资料:
核酸同蛋白质一样,也是生物大分子。核酸的相对分子质量很大,一般是几十万至几百万。核酸水解后得到许多核苷酸,实验证明,核苷酸是组成核酸的基本单位,即组成核酸分子的单体。一个核苷酸分子是由一分子含氮的碱基、一分子五碳糖和一分子磷酸组成的。根据五碳糖的不同可以将核苷酸分为脱氧核糖核苷酸和核糖核苷酸。
核酸大分子可分为两类:脱氧核糖核酸(DNA)和核糖核酸(RNA),在蛋白质的复制和合成中起着储存和传递遗传信息的作用。核酸不仅是基本的遗传物质,而且在蛋白质的生物合成上也占重要位置,因而在生长、遗传、变异等一系列重大生命现象中起决定性的作用。
6、核酸有哪些作用?
核酸是细胞的重要成分,在机体的生长、发育和繁殖过程中,起着重要作用。正因内为如此容,核酸一旦功能下降,就会对机体造成不良影响,其中之一就是导致机体的衰老。一般说来,到了20岁,人体合成核酸的能力下降,使体内核酸发生变化。
另外,自然界中的辐射线加速了核酸的变化。人体每天或多或少地受到微弱辐射线的照射,日积月累的结果,引起人体中核酸的变化,造成身体细胞老化。如不及早防衰,就会出现黑斑、皱纹、皮肤粗糙、视力减退。体力衰弱、健忘等老化现象;中年时期就会开始脱发或早白。
7、核酸的作用和功能高中生物,求解答
核酸也称多聚核苷酸,是由许多个核苷酸聚合而成的生物大分子,核苷酸是由含版氮的碱基、核糖或权脱氧核糖、磷酸三种分子连接而成。碱基与糖通过糖苷键连接成核苷,核苷与磷酸以酯键连接成核苷酸。核苷酸是生物体内一类重要含氮化合物,是各种核酸的基本组成单位。根据核酸所含戊糖的不同,可分为核糖核酸(RNA)和脱氧核糖核酸(DNA)二种。
核酸不但是一切生物细胞的基本成分,还对生物体的生长、发育、繁殖、遗传及变异等重大生命现象起主宰作用。它在生物科学的地位,可用“没有核酸就没有生命”这句话来概括。
8、核酸的主要功能是什么?越全面越好!
(一)核酸的紫外光吸收
在核酸分子中,由于嘌呤碱与嘧啶碱中含有共轭双键体系,因而有特殊的紫外吸收光谱,一般在260nm外有最大吸收峰,其吸收强度常以光密度表示,简称o.d.值(optical density),可以此定量测定核酸或其纯度。
(二)核酸与溴乙锭的作用
溴锭(ethidium bromide,简写etbr)是一种小分子有机化合物。它与核酸作用,可插入dna双螺旋结构中的碱基对之间。带有溴乙锭的dna分子,在紫外光照射下,可发出橙黄色荧光。在rna分子中,也因其有局部双螺旋结构,所以也可有此反应。在进行核酸电泳时,往往以此反应判断dna或rna的电泳速度及其分离情况。
(三)核酸的变性(denaturation)
核酸分子具有一定的构象,若某些理化因素破坏了维持核酸构象的次级键,则其构象发生改变,从而导致核酸的理化性质及其生物功能的改变,这种变化称核酸的变性。如在加热情况下,dna双螺旋分开而变为单链。这并不涉及核苷酸之间共价键的断裂,仅仅使有规则的双螺旋结构变成单链的无规则的“线团结构”。
dna变性后,其理化性质变化很大,例如,它在260nm处的紫外吸收峰升高,这是因为在双螺旋结构中的碱基发色团(共轭双键)因分子变性而暴露于外部所致。这种现象称增色效应(hyperchromicity)。在热变性中,以温度对紫外光吸收值(o.d.值)作图,可得一“s曲线”。从曲线可见,在一相当狭窄的温度范围内有一较大的跳跃,取其最高值的1/2的横坐标上的温度值,称解链温度或熔点,常以tm表示,简称tm值。
(四)核酸的复性(renatutarion)
变性的dna在未被降解之前,只要除去变性因素,已分开的两条单链又可按互补规律逐步重新结合,而恢复成双螺旋结构。这个过程称核酸的复性,也称退火(annealing)。
复性并不是两条单链简单地缠绕的过程,首先从单链分子的无规则碰撞运动开始,这种碰撞是随机的,与dna的浓度、溶液的温度以及离子强度有关。可能发生多次碰撞,当富含g、c序列部分相互靠近时,则易形成氢键,产生一个或几个双螺旋核心,这一过程称成核作用(nucleation)。然后,两条单链的其余部分如拉链迅速形成双螺旋结构,该过程称拉链作用(zippering)。若dna分子尚未完全变性时,则复性较快;完全变性的dna,一般需要较长的时间才能复性。复性的dna分子不一定是原有的一对互补链,大部分复性dna分子都不是原配的。
可以借电镜直接观察复性过程中双链的变化,也可用浮力密度法进行测定,因单链dna的浮力密度比双链dna大0 015g/ml。应用较广的是紫外吸收光谱,在260nm处测其光密度的改变。dna部分复性或全部复性,其光密度值会降低,这种现象称减色效应(hypochrmicity)。根据od260变化情况,可测定dna的复性过程
9、核酸作用?
核酸是细胞的复重要成分,在机体制的生长、发育和繁殖过程中,起着重要作用。正因为如此,核酸一旦功能下降,就会对机体造成不良影响,其中之一就是导致机体的衰老。一般说来,到了20岁,人体合成核酸的能力下降,使体内核酸发生变化。
另外,自然界中的辐射线加速了核酸的变化。人体每天或多或少地受到微弱辐射线的照射,日积月累的结果,引起人体中核酸的变化,造成身体细胞老化。如不及早防衰,就会出现黑斑、皱纹、皮肤粗糙、视力减退。体力衰弱、健忘等老化现象;中年时期就会开始脱发或早白。
10、核酸的作用
遗传信息的载体(DNA)及基因表达中介(mRNA)
核糖体的结构部分(rRNA)回
合成多肽答时的氨基酸载体(tRNA)
基因调控功能(miRNA,siRNA)
少数RNA有自催化功能,即酶的作用.